Chapter

THE MULTIVARIATE NORMAL
DISTRIBUTION

4.1 Introduction

A generalization of the familiar bell-shaped normal density to several dimensions plays
a fundamental role in multivariate analysis. In fact, most of the techniques encountered
in this book are based on the assumption that the data were generated from a multi-
variate normal distribution. While real data are never exactly multivariate normal, the
normal density is often a useful approximation to the “true” population distribution.

One advantage of the multivariate normal distribution stems from the fact that
it is mathematically tractable and “nice” results can be obtained. This is frequently
not the case for other data-generating distributions. Of course, mathematical attrac-
tiveness per se is of little use to the practitioner. It turns out, however, that normal
distributions are useful in practice for two reasons: First, the normal distribution
serves as a bona fide population model in some instances; second, the sampling
distributions of many multivariate statistics are approximately normal, regardless of
the form of the parent population, because of a central limit effect.

To summarize, many real-world problems fall naturally within the framework of
normal theory. The importance of the normal distribution rests on its dual role as
both population model for certain natural phenomena and approximate sampling
distribution for many statistics.

4.2 The Multivariate Normal Density and Its Properties

The multivariate normal density is a generalization of the univariate normal density
to p = 2 dimensions. Recall that the univariate normal distribution, with mean g
and variance o2, has the probability density function

Fx) = __21__23—[(:—#>/012/2 —o0 < x < o0 (1)
Vimo
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Figure 4.1 A normal densitgr
with mean u and variance o
and selected areas under the
curve,

A plot of this function yields the familiar bell-shaped curve shown in Figure 4.1,
Also shown in the figure are approximate areas under the curve within +1 standard
deviations and +2 standard deviations of the mean. These areas represent probabil.

ities, and thus, for the normal random variable X,
Pu-o=sX=pu+to)=.68
P(#,—ZUSXS[.L‘FZO’)&_QS
It is convenient to denote the normal density function with mean u and vari-

ance o2 by N(u, 0?). Therefore, N(10,4) refers to the function in (4-1) with u = 10
and o = 2. This notation will be extended to the multivariate case later.

The term

— 2
(o) = = ey e @2

in the exponent of the univariate normal density function measures the square of
the distance from x to g in standard deviation units. This can be generalized for a

p X 1 vector x of observations on several variables as
(x = n)2H(x—p) (4-3)

The p X 1 vector p represents the expected value of the random vector X, and the
p X pmatrix ¥ is the variance~covariance matrixof X. [See (2-30) and (2-31).] We
shall assume that the symmetric matrix % is positive definite, so the expression in
(4-3) is the square of the generalized distance fromxto u.

The multivariate normal density is obtained by replacing the univariate distance
in (4-2) by the multivariate generalized distance of (4-3) in the density function of
(4-1). When this replacement is made, the univariate normalizing constant
(2w )—1/2(0-2)‘1/2 must be changed to a more general constant that makes the volume
under the surface of the multivariate density function unity for any p. This is neces-
sary because, in the multivariate case, probabilities are represented by volumes
under the surface over regions defined by intervals of the x; values. It can be shown
(see [1]) that this constant is (27)P?| 2|77, and consequently, a p-dimensional
normal density for the random vector X’ = [X1, X5,..., X, ] has the form

1 —{ X~ Pu X
18) = Gy (a4

where —00 < x; < 00,i = 1,2,..., p. We shall denote this p-dimensional normal
density by NP( g, %), which is analogous to the normal density in the univariate

case.
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Example 4.1 (Bivariate normal density) Let us evaluate the p = 2-variate normal

density in terms of the individual parameters u; = E(X;), u, = E(X3),

o1 = Var(X}), 022 = Var(Xy), and py3 = 043/( Vo1 Vor,) = Corr (X, X3).
Using Result 2A .8, we find that the inverse of the covariance matrix

011 012
2 =
012 022

51 = —1___ 022 —012
2 | —
011022 — 012 012 011

Introducing the correlation coefficient p,; by writing o, = p;2 Vo, Vo2, We
obtain oy;05; — 03, = 01,032(1 — p},), and the squared distance becomes

(x = p)EHx - p)

is

[x ]~ —
il 50 Ul 0 TSI o) AP N
o1102:(1 — P%z)
L)) —p12Vo Vo || x1 — P«l:l
—p1z2Vo Vo o1 JL*2 — M2

oga(xy — w1)? + o11(x2 — w)? ~ 2p1, Vo1 Vs (X1 — ) (x2 ~ p2)

011022(1 — sz)

1 x; — )\’ X — pg \? Xy T M) (X T M
7} + = 2p12 T (4-5)
1-p1; Vo Vo, Vo, Vo,
The last expression is written in terms of the standardized values (x; — x1)/ Von and
(x2 = m2)/Voza.

Next, since | %| = 01,02; — 032 = 01,022(1 — p},), we can substitute for T
and [X| in (4-4) to get the expression for the bivariate (p = 2) normal density
involving the individual parameters u;, uy, 01,, 0232, and p;:

1

) = e 46
T 5) 2eVoyo(1 — phy) “9
_ 1 X =Y X = mp\?

xe_"p{ 2(1 —p%z)“ \/ﬁ) +( \/EEJ

_1 X T u Xz—uz)}
P12 \/E; \/a_;

The expression in (4-6) is somewhat unwieldy, and the compact general form in
(4-4) is more informative in many ways. On the other hand, the expression in (4-6) is
useful for discussing certain properties of the normal distribution. For example, if the
random variables X and X, are uncorrelated, so that p;, = 0, the joint density can
be written as the product of two univariate normal densities each of the form of (4-1).

I
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That is, f(x;, x;) = f(x1)f(x;) and X; and X; are independent. [See (2-28).] This
result is true in general. (See Result 4.5.)

Two bivariate distributions with o1; = 7,; are shown in Figure 4.2. In Figure
4.2(a), X, and X; are independent (p;, = 0). In Figure 4.2(b), p;; = .75. Notice how
the presence of correlation causes the probability to concentrate along a line. -

fxy, x3)
h

*2

=
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(a)

f(xpxz)
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B3l

(b)

Figure 4.2 Two bivariate normal distributions. (a) ¢;; = 05, and p;; = 0.
(b) g11 = 032 and p12 = 5.
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From the expression in (4-4) for the density of a p-dimensional normal variable, it
should be clear that the paths of x values yielding a constant height for the density are
ellipsoids. That is, the multivariate normal density is constant on surfaces where the
square of the distance (x — p)"%"!(x — p) is constant. These paths are called contours:
Constant probability density contour = {all xsuch that (x — p)'S7(x — p) = ¢?}

= surface of an ellipsoid centered at »

The axes of each ellipsoid of constant density are in the direction of the eigen-
vectors of 37}, and their lengths are proportional to the reciprocals of the square
roots of the elgenvalues of £71. Fortunately, we can avoid the calculation of 5! when

determining the axes, since these ellipsoids are also determined by the eigenvalues
and eigenvectors of 3. We state the correspondence formally for later reference.

Result 4.1. If 3 is positive definite, so that %! exists, then
1
Se = Ae implies 37le = (x)e

so (A, e) is an eigenvalue—eigenvector pair for %, corresponding to the pair (1/A, e)
for 371, Also, X! is positive definite.

Proof. For X positive definite and e # 0 an eigenvector, we have 0 < e'Se = e'(Ze)
= e'(Ae) = Ae'e = A. Moreover, e = 37!(Se) = 37}(Ae), or e = A e, and divi-
sion by A > 0 gives £ e = (1/A)e. Thus, (1/A, e) is an eigenvalue—eigenvector pair
for 71, Also, for any p X 1x, by (2-21)

(8 (1))
$(Jwares

since each term A7!(x’ e) is nonnegative. In addition, x’e; = 0 for all { only if

= 0. So x # 0 implies that i (I/A)(x e) >0, and it follows that X7

x' 3 1x

positive definite. ]

The following summarizes these concepts:
Contours of constant density for the p-dimensional normal distribution are
ellipsoids defined by x such the that
(x— ) Nx—u)=2 (4-7)
These ellipsoids are centered at u and have axes +cVA;e;, where Ze; = Ae;

fori =1,2,...,p.

A contour of constant density for a bivariate normal distribution with
011 = 033 is obtained in the following example.



t54 Chapter 4 The Multivariate Normal Distribution

Example 4.2 (Contours of the bivariate normal density) We shall obtain the axes of
constant probability density contours for a bivariate normal distribution whep
o1 = 03,. From (4-7), these axes are given by the eigenvalues and eigenvectors of
3. Here [X — Al| = 0 becomes

i A i “"(0'11‘)‘)2'0%2
o2 o1~ A

={(A -0y -o)(A ~ oy + 0p32)

Consequently, the eigenvalues are Ay = a1; + o3 and A; = o1; — 07,. The eigen-
vector e; is determined from

g g e e
o [ L= (o ton)|
012 011 )& )

o€ + ope = (01 + op)e

or

o126 + o€ = (011 + 0y3)e,

These equations imply that e, = e;, and after normalization, the first eigenvalue~
eigenvector pair is

M=o top e =

Similarly, A, = oy; ~ 017 yields the eigenvector e = [1/V2, —1/V2].

When the covariance o (or correlation p;,) is positive, A\; = oj; + o isthe
largest eigenvalue, and its associated eigenvector €] = [1/V2, 1/ V2] lies along
the 45° line through the point ' = [u,, #,]. This is true for any positive value of
the covariance (correlation). Since the axes of the constant-density ellipses are
given by +cVA; e; and +cVA; e; [see (4-7)], and the eigenvectors each have
length unity, the major axis will be associated with the largest eigenvalue. For
positively correlated normal random variables, then, the major axis of the
constant-density ellipses will be along the 45° line through u. (See Figure 4.3.)

c JU” +0)2
4 JU” —0)
Hyl- - Figure 4.3 A constant-density

contour for a bivariate normal
! distribution with oy, = a5, and
n aiy > 0(orpyz > 0).
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When the covariance (correlation) is negative, A, = o;; — g3 will be the largest
eigenvalue, and the major axes of the constant-density ellipses will lie along a line
at right angles to the 45° line through p. (These results are true only for
o1 = 023.)

To summarize, the axes of the ellipses of constant density for a bivariate normal
distribution with oy, = 0, are determined by

1 1
:*:C\/O'll + oy l\fj and iCVO’ll—O'lz \_/f
V2 V2 =

We show in Result 4.7 that the choice ¢? = y3(a), where x%(a) is the upper
(100c)th percentile of a chi-square distribution with p degrees of freedom, leads to
contours that contain (1 — a) X 100% of the probability. Specifically, the following
is true for a p-dimensional normal distribution:

The solid ellipsoid of x values satisfying
(x — pn)'T7(x — p) = xi(a) (4-8)

has probability 1 — a.

The constant-density contours containing 50% and 90% of the probability under
the bivariate normal surfaces in Figure 4.2 are pictured in Figure 4.4.

x, *2
y

i —® R

> X, X

L

H 1

Figure 4.4 The 50% and 90% contours for the bivariate normal
distributions in Figure 4.2.

The p-variate normal density in (4-4) has a maximum value when the squared
distance in (4-3) is zero—that is, when x = u. Thus, p is the point of maximum
density, or mode, as well as the expected value of X, or mean. The fact that u is
the mean of the multivariate normal distribution follows from the symmetry
exhibited by the constant-density contours: These contours are centered, or balanced,
at u.
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Additional Properties of the Multivariate
Normal Distribution

Certain pmperties f)f .the normal distribution will be needed repeatedly in our
explanations of sta_ltlstlc?l models and methods. These properties make it possible
to manipulate pormal distributions easily and, as we suggested in Section 4.1, are
gartly rfasponSIble for the .popularity of the normal distribution. The key pro’per.
tl‘es, which we shall soon discuss in some mathematical detail, can be stated rather
simply.

. The .followmg are true for a.random vector X having a multivariate normal
distribution:

1. Linear combinations of the components of X are normally distributed.

2. All subsets of the components of X have a (multivariate) normal distribution

3. Zero covariance implies that the corresponding components are independentl
“distributed. d

4. The conditional distributions of the components are (multivariate) normal.

These statements are reproduced mathematically in the results that follow. Man
of these results are illustrated with examples. The proofs that are included 'shou]g
help improve. your understanding of matrix manipulations and also lead you
to an appreciation for the manner in which the results successively build on
themselves.

Result 4.2 can be taken as a working definition of the normal distribution With
this in hand, the subsequent properties are almost immediate. Our partial pn.)of of
Result 4.2 indicates how the linear combination definition of a normal densit
relates to the multivariate density in (4-4). Y

Result’4.2. If X is distributed as N,(u, %), then any linear combination of vari-
fablc?s a.X = a1 X1 + 23X, + -+ + a,X, isdistributed as N(a'u, a'Za). Also, if a’X
is distributed as N(a’u,a'Xa) for every a, then X must be N,(u, ). ’

Proo.f. The expe.ctec.l value. and variance of a'X follow from (2-43). Proving that
a'Xis n(.)rmally distributed if X is multivariate normal is more difficult. You can find
a proof in [1]. The second part of result 4.2 is also demonstrated in [1]. -

Example 4.3 (The dislfribution of a linear combination of the components of a normal
random vector) Consider the linear combination a'X of a multivariate normal ran-
dom vector determined by the choice a’ = [1,0,...,0]. Since

Xi
a'’X =[1,0,...,0] )fz =X

Xp
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and
M
a'p = [1,0,...,0]| *2 | =
Hp
we have
o o1z ooy, ||l
a a o 0
a’Sa =[1,0,...,0]| "}* "2 2 = oy
T1p O2p 0 0p 1[0

and it follows from Result 4.2 that X is distributed as N(uy, 011). More generally,
the marginal distribution of any component X; of X is N(u;, o). -

The next result considers several linear combinations of a multivariate normal
vector X.

Result 4.3, If X is distributed as N,(u,X), the g linear combinations

aqu LR alep

a21X1 + e+ aszp

A
(gxp)(px1) . :
aqul + -+ aqup

are distributed as Nj(Au,ATA’). Also, X + d , where d is a vector of
(px1)  (px1)

constants, is distributed as N,(u + d,X).

Proof. The expected value £(AX) and the covariance matrix of AX follow from
(2-45). Any linear combination b'(AX) is a linear combination of X, of the
form a'X with a = A’b. Thus, the conclusion concerning AX follows directly from
Result 4.2,

The second part of the result can be obtained by considering a’(X + d) =
a’X + (a’d), where a'X is distributed as N(a’u,a’Xa). It is known from the
univariate case that adding a constant a’d to the random variable a’X leaves the
variance unchanged and translates the mean to a’u + a’d = a’(p + d). Since a
was arbitrary, X + d is distributed as N,(pn + d,X). -

Example 4.4 (The distribution of two linear combinations of the components of a
normal random vector) For X distributed as N;(u, %), find the distribution of

Xi
Xl - X2 1 ~1 0
= = A
X3
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By Result 4.3, the distribution of AX is multivariate normal with mean

A‘L - 1 —1 0 Zl - H1 — H2
0 1 -1[|"? M2 — H3
H3

and covariance matrix

‘1 -1 0 011 012 013 1 0
La—
AZA = 0 1 -1 012 037 0Oy3 -1

N 013 033 033 | 0 -1
r — 1 0

_ | %11 T 012 013~ 033 013~ 023 -1
|L.012 — 013 023 — 023 0323 ~ 033 | 0 -1

_|on 2012+ 052 012+ 033 — 022 — 013
| 012 + 023 = 033 =~ 013 093 — 2033 + 033

Alternatively, the mean vector Au and covariance matrix AZ A’ may be veri-
fied by direct calculation of the means and covariances of the two random variables
Y1=X1—X2andY2=X2—X3. |

We have mentioned that all subsets of a multivariate normal random vector X
are themselves normally distributed. We state this property formally as Result 4.4.

Result 4.4. All subsets of X are normally distributed. If we respectively partition
X, its mean vector u, and its covariance matrix X, as

= )
X = |-l =] .. S St N
(px1) Xy (p‘:I) M2
((p—g)x1) ((p—q)x1)
and
D3R %12
(exq) i (¢%(p—9)
3 = :
(7% p) 3,

1 2o
((p-q)*q) ; {p—q)x(pP~q))

then X is distributed as Ny(pu;, 21;).

Proof. Set A =| I | 0
(gxp) (9%4q) i (gx(p—q))

To apply Result 4.4 to an arbitrary subset of the components of X, we simply relabel

the subset of interest as X; and select the corresponding component means and

covariances as pmq and 3, respectively. -

] in Result 43, and the conclusion follows.
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Example 4.5 (The distribution of a subset of a normal random vector)

If X is distributed as N5(p, %), find the distribution of [ §2:| We set
4

X M2 022 024j|
X, = s = , . 3., =
! l:X4j| # |:P«4 1 024 044

and note that with this assignment, X, u, and 3 can respectively be rearranged and
partitioned as

Xz M2 022 024 (013 023 O35
Xy Ba 024 044 1014 O34 O4s
X=\X1|, wm=|m|, 2Z2=|0op ouion 013 015
X3 M3 023 034|013 033 O35
Xs Bs 035 045 {015 035 Oss
or
X M
(2x1) (2x1)
X == S ., x=
X, M2
(3x1) (3x1)

Thus, from Result 4.4, for

we have the distribution

N 3.) = N P«z:l, l:"zz 1724:|>
(11, 211) 2([“4 Ors Taa

It is clear from this example that the normal distribution for any subset can be
expressed by simply selecting the appropriate means and covariances from the origi-
nal i and 3. The formal process of relabeling and partitioning is unnecessary. M

We are now in a position to state that zero correlation between normal random
variables or sets of normal random variables is equivalent to statistical independence.

Result 4.5.
(a) If X, and X, are independent,then Cov(X;,X,) = 0,agq; X g, matrix of
(‘lel) (qle)
Zeros.
X; |, M®1 2y, 212 . 5
M) If |-~ j| is N, (l: ------ , | e , then X; and X, are independent if
X, ) 2o i 2 ' 2 P

and only if X;; = 0.
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(¢) If X, and X, are independent and are distributed as qu(ﬂ-x,En) and

X,
N, (p2, X232), respectively, then [XZ:‘ has the multivariate normal distributiop

- | m|[Enie
oo 2] 31

Proof. (See Exercise 4.14 for partial proofs based upon factoring the density
function when X%, = 0.) . -,

Example 4.6 (The equivalence of zero covariance and independence for no}mal
variables) Let (3’x(1) be N3(u, %) with

1
3
0

[

it
S = N
N oo

Are X, and X, independent? What about ( X, X,) and X3?
Since X, and X, have covariance o, = 1, theyare not independent. However,

partitioning X and X as

o 4140 (fxlzl)’s(fif)
X=X 32=[13i0]= 21 _________
------ -......_T_.~_ : } 2

3 0 0;:2 (132) faxi)

we see that X; = [AX;I:' and X3 have covariance matrix X, = [8} Therefore,
2

(X1, X;) and X; are independent by Result 4.5. This implies X; is independent of
X and also of X;. =

We pointed out in our discussion of the bivariate normal distribution that
p1z2 = 0 (zero correlation) implied independence because the joint density function
[see (4-6)] could then be written as the product of the marginal (normal) densities of
X and X;. This fact, which we encouraged you to verify directly, is simply a special
case of Result 4.5 withgq; = ¢ = 1.

Result 4.6. Let X [il] be distributed as N,(u, %) with p [ul:l’
2 2
DITRRSY)
> FoTET and | X;,| > 0. Then the conditional distribution of X, given
21 §

that X; = x,, is normal and has

Mean = p; + 315353 (x; ~ )
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and
Covariance = %, — %,,2333,,

Note that the covariance does not depend on the value x; of the conditioning
variable.

Proof. We shall give an indirect proof. (See Exercise 4.13, which uses the densities
directly.) Take

I | —x5,5]
(¢xq) ¢ x<(pog)

(pxp)

0 I
(P—q)%q | (P—q)x(P~q)
SO

X, — [xl - = 255X, ~ F-z)j'
AX - p)=A =
( ») 'sz - F-zjl X; - m

is jointly normal with covariance matrix ASA’ given by

[1 5_212255} l:zllé 212‘||: I 0| _ |2 2122552215 0.’._;|
0 I So1i Zap | [ (=E12530) 0 1 0 D PR

Since X; — py — %1,%73 (X5 — p,) and X, — p, have zero covariance, they are
independent. Moreover, the quantity X; — g, — 51,553 (X, — p2) has distribution
Ng(0,%y; — 212573%1). Given that X; = x;, sy + 215273 (X, — p) is a constant.
Because X; — p; — %;,573(X; — &) and X, — u; are independent, the condi-
tional distribution of X; — pt; — £,573 (X, — p,) is the same as the unconditional
distribution of X; — pt; — 21,553 (X, — mo). Since Xy — p; — Zp373(Xo — m2)
is Ny(0,%;; — 31,373%51), so is the random vector X; — g — 51,373 (X2 — H2)
when X has the particular value x,. Equivalently, given that X, = x,, X is distrib-
uted as Ny(pq + 212555 (X2 — o), 2q1 — 212223 221). -

Example 4.7 (The conditional density of a bivariate normal distribution) The
conditional density of X,, given that X, = x, for any bivariate distribution, is
defined by

. . . f(xl’ 12)
f(x;|x;) = {conditional density of X given that X, = x,} = W
2

where f(x;) is the marginal distribution of X;. If f(x;, x,) is the bivariate normal
density, show that f(x;|x,) is

2

12 o1

N{p +—=(x3 = pa)yoy1 — ——
( 022( )01 022
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Here o1 — 032/o22 = 011(1 = p}2). The two terms involving x; — 4, in the expo-
nent of the bivariate normal density [see Equation (4-6)] become, apart from the
multiplicative constant -1/2(1 - pta),

(X1 — )’ —2a (x; = ) (X2 — 12)
011 12 Vo Voa,

1 11 2 ph
= X = — pra——= (x; — _Pi2
011|: 1 PIZ,/—U_ZZ( 2~ M) 022( 2~ M)

Because p;2 = 012/ Vo1 Vo232, 0T P12 Va11/ Vo, = 012/023, the complete expo-

nent is
-1 (x1 - ) ~ 2 ﬁ = 1) (X2 — i) N (x; — pp)?
2(1 - At2) o1 12 Va1 Voo 022
-1

(x p L\/‘T—l—l ( )
- —— - Q) X, —
201,(1 = pi2) ! ! P Von H

1 1 ot 5
s = ) (-
2(1 - pla) (Uzz Uzz) (2 = w2)

-1 12 2 1 (- w)
= - — — (- R
2011(1 = pt2) ( 1T 022( ? M)> 2 o

The constant term 27V o 10221 — o 2) also factors as
V27 Vo X V27 Voyy(l ~ p%2)
Dividing the joint density of X; and X, by the marginal density

~(x~p2)/202,

1
1) = e ¢
and canceling terms yields the conditional density

_ flx, %)
f(xllxz) = ‘—-f(xz)_-

1 e lBmm=(@/en)(x=p) 2o (1=ph),

Y Vo (1 — p12)

—00 < x < ©

Thus, with our customary notation, the conditional distribution of X; given that
X,=x, is N(u + (012/022) (%2~ pa), o11(1-phy)). Now, 21— 21,553 =
oy — 0o =ou(l p%2) and 212333 = 012/02,, agreeing with Result 4.6,
which we obtained by an indirect method. -
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For the multivariate normal situation, it is worth emphasizing the following:

1. All conditional distributions are (multivariate) normal.
2. The conditional mean is of the form

M1+ Brg1(Xgrr = Bga1) + oo+ Bup(Xp, — 1p)
(49)

My + Bq,q+l(xq+1 - F’q+1) +oeee Bq,p(xp - F’p)

where the B’s are defined by

Big+1 Big+2 - Bip
-1 _ | Bag+1 Bag+2 - Ba
35 = | Y L

Bq,q+1 Bq,q+2 Bq,p

3. The conditional covariance,%;; — 3;,5733,,1, does not depend upon the value(s)
of the conditioning variable(s).

We conclude this section by presenting two final properties of multivariate
normal random vectors. One has to do with the probability content of the ellipsoids
of constant density. The other discusses the distribution of another form of linear
combinations.

The chi-square distribution determines the variability of the sample variance
5% = 5, for samples from a univariate normal population. It also plays a basic role
in the multivariate case.

Result 4.7. Let X be distributed as N,(u, 2) with | %| > 0. Then

(@ (X — u)'E7(X - p) is distributed as x3, where X5 denotes the chi-square
distribution with p degrees of freedom.

(b) The N,(p,X) distribution assigns probability 1 — « to the solid ellipsoid
x(x-p)Ilx-—p)= Xf,(a)}, where xf,(a) denotes the upper (100a)th
percentile of the xf, distribution.

Proof. We know that x? is defined as the distribution of thesum Z} + 2} + --- + Z3,
where Z,,Z;,...,Z, are independent N(0,1) random variables. Next, by the
spectral decomposition [see Equations (2-16) and (2-21) with A = X, and see

21
Result 4.1], 271 = > = e;ef, where Se; = Ae;, so X le; = (1/A;)e;. Consequently,

i=1 Ad

(X - ) 5N (X - p) = ﬁ‘{ (/A (X — o) esel(X — o) = i (1/A) (€)X — ) =

p p
>/ VA) (X ~ y.)]2 = > Z? forinstance. Now,we can write Z = A(X — n),
i=1 =
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where

S
—e’
VA, !

Z .
. - % | e

(px1) ) :

z, )
—e’
A,, p

and X — p is distributed as N, (0,2) Therefore, by Result 4.3, Z = A(X — y,) is
distributed as N,(0, AZA’), where

= 1 b1 b
A X A =| Vi Aee : ey i e
(pxP)(pXP)(PXP) 2 l:E :H:\/A_l lg Vi 2P VA, pj|

1
e’
L VA, *

VA e
= \//\_zeé ie g=——e —e =1
VA, e,

By Result4.5, Z;, Z,,..., Z, are independent standard normal variables, and we
conclude that (X — )2 (X — ) hasa xf,-distribution

For Part b, we note that P[(X — u)'27Y(X — u) < ] is the probability as-
signed to the ellipsoid (X — u)’ 27X — u) =< ¢ by the density N,(u,Z). But

from Part a, P[(X — u)' 27X — u) =< x3(@)] = 1 - @, and Part b holds. ]

Remark: (Interpretation of statistical distance) Result 4.7 provides an interpreta-
tion of a squared statistical distance. When X is distributed as N,(u, %),

(X~ u)TYX - p)

is the squared statistical distance from X to the population mean vector u. If one
component has a much larger variance than another, it will contribute less to the
squared distance. Moreover, two highly correlated random variables will contribute
less than two variables that are nearly uncorrelated. Essentially, the use of the in-
verse of the covariance matrix, (1) standardizes all of the variables and (2) elimi-
nates the effects of correlation. From the proof of Result 4.7,

X-p)¥'X-p)=21+2Z3+-+ Z}
P
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1 1
Interms of X 2 (see (2-22)),Z = X 2(X — p) has a N,y(0,1,) distribution, and

11
(X - p)EI(X - p)=(X-p)I XX - p)
=Z2'Z=2}+27}+--+ 272

The squared statistical distance is calculated as if, first, the random vector X were
transformed to p independent standard normal random variables and then the
usual squared distance, the sum of the squares of the variables, were applied.
Next, consider the linear combination of vector random variables
aXjt Xt +t e X, =[X i Xy - i X)) e (4-10)
(pXxn) (nXx1)
This linear combination differs from the linear combinations considered earlier in
that it defines a p, X 1 vector random variable that is a linear combination of vec-
tors. Previously, we discussed a single random variable that could be written as a lin-
ear combination of other univariate random variables.

Result 4.8. Let X, X;,..., X, be mutually independent with X; distributed as
Np(mj, X). (Note that each X has the same covariance matrix X.) Then

Vl = Clxl + CzXz + -+ c,,X,,

n n
is distributed as N,,(}_j Cimj, (}_j c,z-)z). Moreover, V;and V, = 5 X; + bX;
J=1 j=1

+ --+ + b,X, are jointly multivariate normal with covariance matrix

()_j 0,2)2 | (b'c) X

;I'c)z (,-21 b,z.)z

Consequently, V; and V, are independent if b'e = 2 ¢ib; = 0.
: =1

Proof. By Result4.5(c), the np component vector

[Xllv"'7le1X217"'1X2p"~-anp] = [XII’XYZvYX:z] = X'
(1xnp)

is multivariate normal. In particular, ( X isdistributed as N, ,(u, 3,), where

npx1)
f7o X 0 --- 0
no= K21 and 3., = 0 2 U 0
(npx1) (npXnp) L :

M 0 0 --- 3
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A = cil ¢l -+ ¢l
(2pxnp) bl bzl an

where Iis the p X p identity matrix, gives

The choice

n

X
NEEEN
Sex | LV
j=1

and AX is normal N, ,(Au, A%,A’) by Result 4.3. Straightforward block multipli.
cation shows that A3, A’ has the first block diagonal term

[Clz, sz,.. ][CII Czl -y Cp ] = (-2 C]Z)}:

j=1

The off-diagonal term is

(a2, 6%, .., caZ][BL, byl ... b = (2 c,b,-)z

i=1

n
This term is the covariance matrix for Vi, V,. Consequently, when E cib; =
j=1
n

b'c = 0,so that (2 c,-b,-)E = ( 0 v V; and V; are independent by Result 4.5(b). m
=1 pxp

* For sums of the type in (4-10), the property of zero correlation is equivalent to

requiring the coefficient vectors b and ¢ to be perpendicular.

Example 4.8 (Linear combinations of random vectors) Let X, X,, X3, and X, be
independent and identically distributed 3 X 1 random vectors with

3 3 -11
mp=|-1 and X =|-1 10
~ 1 1 0 2

We first consider a linear combination a' X of the three components of X;. This isa
random variable with mean

a’'py=3a; —a, + a3
and variance
'Y a=3d + a& + 20} — 2a,a, + 2a;a,

That is, a linear combination a’'X, of the components of a random vector is a single
random varjable consisting of a sum of terms that are each a constant times a variable.
This is very different from a linear combination of random vectors, say,

Clxl + CzXz + C3X3 + C4X4
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which is itself a random vector. Here each term in the sum is a constant times a
random vector.
Now consider two linear combinations of random vectors

1 1 1 1
Exl + EXZ + E‘Xg; + —2—X4

and

X1+X2+X3'_3X4
Find the mean vector and covariance matrix for each linear combination of vectors
and also the covariance between them.

By Result 4.8 with ¢; = ¢; = ¢3 = ¢4 = 1/2, the first linear combination has
mean vector

6
(a+ag+teate)m=2un=|-2
2
and covariance matrix
3 -11
(G+E+d+eHS=1x3%=|-1 1 0
1 0 2

For the second linear combination of random vectors, we apply Result 4.8 with
by = b, = b3 = 1and b, = —3 to get mean vector

0
by +by + b3 +b)u=0u =10
0
and covariance matrix
36 —-12 12
B+ +h3+BS =12x%=|-12 12 0O
12 0 24

Finally, the covariance matrix for the two linear combinations of random vectors is

(Clbl + Czbz + C3b3 + C4b4)z = 02 =

oo O
o O O
o o O

Every component of the first linear combination of random vectors has zero
covariance with every component of the second linear combination of random vectors.
If, in addition, each X has a trivariate normal distribution, then the two linear
combinations have a joint six-variate normal distribution, and the two linear combi-
nations of vectors are independent. L
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4.3 Sampling from a Multivariate Normal Distribution
and Maximum Likelihood Estimation

We discussed sampling and selecting random samples briefly in Chapter 3. In thjg .
section, we shall-be concerned with samples from a multivariate normal popula-
tion—in particular, with the sampling distribution of X and S.

The Multivariate Normal Likelihood

Let us assume that the p X 1 vectors X, Xy, ... X, represent a random sample
from a multivariate normal population with mean vector p and covariance matrix .
Z. Since X, X;,..., X, are mutually independent and each has distributiop
Ny(m, %), the joint density function of all the observations is the product of the
marginal normal densities:

Joint density - " 1 e mY I (x~p) /2
of X1, Xs,..., X, (27)PP| 3 |\

e ;npn |>:1|m‘e'" B e (a-11)
T

When the numerical values of the observations become available, they may be sub-
stituted for the x; in Equation (4-11). The resulting expression, now considered as a func-
tion of u and % for the fixed set of observations x, X,, ..., X,,, is called the lkelihood.

Many good statistical procedures employ values for the population parameters
that “best” explain the observed data. One meaning of best is to select the parame-
ter values that maximize the joint density evaluated at the observations. This tech-
nique is called maximum likelihood estimation, and the maximizing parameter -
values are called maximum likelihood estimates.

At this point, we shall consider maximum likelihood estimation of the parame-
ters u and ¥, for a multivariate normal population. To do so, we take the observa-
tions xy,X,,...,x, as fixed and consider the joint density of Equation (4-11)
evaluated at these values. The result is the likelibood function. In order to simplify
matters, we rewrite the likelihood function in another form. We shall need some ad-
ditional properties for the trace of a square matrix. (The trace of a matrix is the sum
of its diagonal elements, and the properties of the trace are discussed in Definition

2A.28 and Result 2A.12.)
Result 4.9. Let A be a k X k symmetricmatrix and x be a k X 1 vector. Then
(a) xX’'Ax = tr(x'Ax) = tr(Axx’)
k

(b) tr(A) = 3 A;, where the A, are the eigenvalues of A.

=1
Proof. For Part a, we note that x'Ax is a scalar, so X’Ax = tr(x’Ax). We pointed
out in Result 2A.12 that tr (BC) = tr(CB) for any two matrices B and C of

dimensions m X k and k X m, respectively. This follows because BC has 2 bijc;; as
frest
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m k

its ith diagonal element, so tr(BC) = 2 (2 b,-jcﬁ). Similarly, the jth diagonal
=1 \j=1

2 b,c,,) = tr (BC).

m k m
element of CBis Y, ¢;;b;j,s0tr (CB) = > (2 Cjibij) (
i=1 j=1 \i=1 i= l j=1

Let x’ be the matrix B with m = 1, and let Ax play the role of the matrix C. Then
tr(x'(Ax)) = tr ((Ax)x"), and the resuit follows.

Part b is proved by using the spectral decomposition of (2-20) to write
A = P’AP, where PP’ = I and A is a diagonal matrix with entries A}, Az, ..., Ag.
Therefore, tr (A) = tr (P'AP) = tr (APP') = tr (A) = A + Az + -+ + Ap. ]

Now the exponent in the joint density in (4-11) can be simplified. By Result 4.9(a),
(x; = w)' 27 (x; = p) = trl(x; — o) TNx; - p)]
o [Z7(x; — p)(x; — p)'] (4-12)

I

Next,

2 (x, - w)E(x; - p) = 2 t[(x; — u)'S Ny, - )]
j= j=

if

2 e [ENx — ) (x; — )]

w5 30wt - w )] (a13)

since the trace of a sum of matrices is equal to the sum of the traces of the matrices,

n
according to Result 2A.12(b). We can add and subtract X = (1/n) > X; in each
j=1

I

n
term (x; — ) in Y, (x; — p)(x; — p)’ togive
<1

P R O R R

—Z(X - X)(x; — X)' +2(x—n)(x—n)
A

2 i~ X)X %) +ax - p)E- ) . (414

n n

because the cross-product terms, ¥, (x; — X)(X — u) and Y, (X — p)(x; — X)',
j=1 j=1

are both matrices of zeros. (See Exercise 4.15.) Consequently, using Equations (4-13)

and (4-14), we can write the joint density of a random sample from a multivariate

normal population as

Joint density of
Xl,xz,u- yxn

} = @a)y |3 [

x exp{—tr[Z'l(i (x;~%)(x;,~X)' + n(X — p)(x - p)’)]/Z} (4-15)

j=1
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Substituting the observed values x1, x5, . . ., X,, into the joint density yields the likeli-
hood function. We shall denote this function by L{u, %), to stress the fact thatitisa
function of the (unknown) population parameters g and X.. Thus, when the vectors
x; contain the specific numbers actually observed, we have

- 1 - _ n s ‘_.i' (5 - ,
L(p, %) = WC "[z 1(;)3 (=) (=) -} (X ) )]/2 (4-16)

It will be convenient in later sections of this book to express the exponent in the like-
lihood function (4-16) in different ways. In particular, we shall make use of the identity

tr[z'l(]}:; (x = D)% = %) + (X~ p)(X - ”)’)}

~ i[53 6y~ 005 - 1)+ n 2w - k- 0]
2

= ﬂ’{z—l( .nl (x; = X)(x; = i)')] +nEx-p)2X - p) (4-17)
2

Maximum Likelihood Estimation of u and =

The next result will eventually allow us to obtain the maximum likelihood estima-
tors of p and X..

Result 4.10. Given a p X p symmetric positive definite matrix B and a scalar
b > 0, it follows that

B T BPIR
|B*

=P
for all positive definite ( p) . with equality holding only for X = (1/2b)B.
pxp

Proof. Let BY2 be the symmetric square root of B [see Equation (2-22)],
so BY2B2<B, BB Y2=1 and BB Y2 =Bl Then tr(2'B)=
twr[(Z'BYY)B2] = tr[BYX(%7'BY?)]. Let 5 be an eigenvalue of BY2% B2, This
matrix is positive definite because y'BY25, B2y = (BY%y)'S™1(B2y) > 0 if
BY2y # 0 or,equivalently, y # 0. Thus, the eigenvalues »; of B'/2%~'BY/2 are positive
by Exercise 2.17. Result 4.9(b) then gives
©(EB) - w(BAEIBR) = S,
=1

. P
and | B2571BY2| = [ »; by Exercise 2.12. From the properties of determinants in
i=1

Result 2A.11, we can write
|BREIBR| = |BY2|| 27 [BY] = |57 BY2 | B2
1

= [S7|B| =
=Bl = g,

|B]
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or »
_1_ _ ,BI/ZE—IBl/zl _ E i
% |B| |B|

Combining the results for the trace and the determinant yields

b
ni P
1 _«[z'B)2 (-'=1 ) R NN L .
e - e ;2 i/2 — 20 "7i/2
B wp A" = pp Ln

But the function n°¢ ™2 has a maximum, with respect to 7, of (2b)’¢™®, occurring at
n = 2b. The choice n; = 2b, for each i, therefore gives
1 e r(EB)2 < 1 (2b)Pbe~bp
|BJ®

|

The upper bound is uniquely attained when X, = (1/2b)B, since, for this choice,

B2571BY2 = BY2(2b)B'B'? = (2b) I
(pxp)

and
tr[51B] = tr[BY2SIBY2] = r[(2b)1] = 2bp
Moreover,
1 |BYETBY2 |(26)1]  (2b)P
=1~ B [B|  [B

Straightforward substitution for tr[3,'B] and 1/|3, |? yields the bound asserted. m

The maximum likelihood estimates of g and ¥ are those values—denoted by s
and %—that maximize the function L(u, %) in (4-16). The estimates g and 3 will
depend on the observed values x;, X5, .. ., X, through the summary statistics X and S.

Result 4.11. Let X;,X,,...,X, be a random sample from a normal population
with mean u and covariance ¥,. Then

(n—1)

n

A~ =3 Gl 1 2 5 5\
j=1
are the maximum likelihood estimators of pu and X, respectively. Their observed
values, X and (1/n) >, (x; — X)(x; — X)', are called the maximum likelihood esti-
j=1

mates of u and 3.

Proof. The exponent in the likelihood function [see Equation (4-16)}, apart from
the multiplicative factor —%, is [see (4-17)]

tr[Z'l(g (x; ~ X)(x; - i)')] +n(X— pu)SI X - p)
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By Result 4.1, 571 is positive definite, so the distance (X — p)' S (X — u) > O up-
less u = X. Thus, the likelihood is maximized with respect to u at i = X. It remains
to maximize

L(M;, )= W[t{l“(’é (x,»—i)(x,-—i)’)] / 2

n
over X. By Result 4.10 with b = n/2and B = Y (x; — X)(x; ~ X)', the maximum
s

- occursat 3 = (1/n) 3, (x; — X)(x; — X)', as stated.
j=1

The maximum likelihood estimators are random quantities. They are obtained by
replacing the observations xi, X, ..., X, in the expressions for s and % with the
corresponding random vectors, X, X,,..., X,,. n

We note that the maximum likelihood estimator X is a random vector and the
maximum likelihood estimator X is a random matrix. The maximum likelihood
estimates are their particular values for the given data set. In addition, the maximum

of the likelihood is
L(i,2) = L won L (4-18)
s (2,,-)np/2 | i | n/2
or,since |2| = [(n — 1)/n]?|S|,
L(fi,3) = constant X (generalized variance)™/2 (4-19)

The generalized variance determines the “peakedness” of the likelihood function
and, consequently, is a natural measure of variability when the parent population is
multivariate normal. )

Maximum likelihood estimators possess an invariance property. Let @ be the
maximum likelihood estimator of @, and consider estimating the parameter (@),
which is a function of 8. Then the maximum likelihood estimate of

h(8) is given by h(d) (4-20)

(a function of ) (same function of 6)
(See[1] and [15].) For example,

1. The maximum likelihood estimator of u'%u is ﬁ’f}”‘ i, where i = X and
3 = ((n — 1)/n)S are the maximum likelihood estimators of u and X,
respectively.

2. The maximum likelihood estimator of Vo is V o;;, where

A 1 o2
Gi == 2 (X - X3)
n 5

is the maximum likelihood estimator of o;; = Var (Xj).
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Sufficient Statistics

From expression (4-15), the joint density depends on the whole set of observations
X1,Xy,.- -, X, only through the sample mean X and the sum-of-squares-and-cross-

products matrix Y, (x; — X)(x; — X)' = (n — 1)S. We express this fact by saying
=1

that X and (n ~ 1)S (or S) are sufficient statistics:

Let X;, X5, ..., X, be a random sample from a multivariate normal population
with mean u and covariance X. Then

X and § are sufficient statistics (4-21)

The importance of sufficient statistics for normal populations is that all of the
information about g and ¥ in the data matrix X is contained in X and S, regardless
of the sample size n. This generally is not true for nonnormal populations. Since
many multivariate techniques begin with sample means and covariances, it is pru-
dent to check on the adequacy of the multivariate normal assumption. (See Section
4.6.) If the data cannot be regarded as multivariate normal, techniques that depend
solely on X and S may be ignoring other useful sample information.

4.4 The Sampling Distribution of X and S

The tentative assumption that X;, X, ..., X,, constitute a random sample from a
normal population with mean g and covariance ¥, completely determines the
sampling distributions of X and §. Here we present the results on the sampling
distributions of X and S by drawing a parallel with the familiar univariate
conclusions.

In the univariate case (p = 1), we know that X is normal with mean p =
(population mean) and variance

1 o2 = population variance

n sample size

The result for the multivariate case (p = 2) is analogous in that X has a normal
distribution with mean g and covariance matrix (1/ n)E

For the sample variance, recall that (n — 1)s2 = 2 (X;-X )% is distributed as

o times a chi-square variable having n — 1 degreeslof freedom (d.£). In turn, this
chi-square is the distribution of a sum of squares of mdependent standard normal
random variables. That is, (n — 1)s? is distributed as 0%(Z} + --+ + Z2_;) = (02Z;)*
+ -+ + (0Z,_1)%. The individual terms oZ; are independent]y distributed as
N(0,d?). It is this latter form that is suitably generalized to the basic sampling
distribution for the sample covariance matrix.



Chapter 4 The Multivariate Normal Distribution

The sampling distribution of the sample covariance matrix is called the Wishars
distribution, after its discoverer; it is defined as the sum of independent products of
multivariate normal random vectors. Specifically.

W,(- | £) = Wishart distribution with st df. (4-22)

mn
= distribution of 3, Z,Z;
j=1

where the Z; are each independently distributed as N,(0, %).
We summarize the sampling distribution results as follows:

Let X, X,,..., X, be a random sample of size r from a p-variate normal
distribution with mean g and covariance matrix £. Then

1. Xis distributed as N(p.(1/n)%)-
2. (n ~ 1)Sis distributed as a Wishart random matrix with » — 1 df.  (4-23)

3. X and S are independent.

Because ¥, is unknown, the distribution of X cannot be used directly to make
inferences about u. However, $ provides independent information about X, and the
distribution of § does not depend on p. This allows us to construct a statistic for

making inferences about g, as we shall see in Chapter 5.
For the present, we record some further results from multivariable distribution

theory. The following properties of the Wishart distribution are derived directly
from its definition as a sum of the independent products, Z;Z;. Proofs can be found

in [1].

Properties of the Wishart Distribution

1. If A, is distributed as W,, (A [Z) independently of A, which is distributed as
Woy(Az|E), then A, + Ay is distributed a5 Wi+, (Ay + Azl E). That is, the
degrees of freedom add. {4-24)

2. If A is distributed as W,,(A | £), then CAC' is distributed as W, (CAC’ jCxC).

Although we do not have any particular need for the probability density
function of the Wishart distribution, it may be of some interest to see its rather
complicated form. The density does not exist unless the sample size n is greater
than the number of variables p. When it does exist, its value at the positive definite
matrix A is

|A ‘[n—p-l)/le'“(ﬂ—'l/z

7 . A positive definite
2p(n—l)/2,n,p(p—l)/4'zl("'l)[z 11 r(%(,, - ,-))
=1

wn—l(A , 2) =

(4-25)

where I (-) is the gamma function. {See [1} and f11})
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4.5 Large-Sample Behavior of X and S

Suppose the quantity X is determined by a large number of independent causes
Wi, Va,. .., V,, where the random variables V; representing the causes have approxi-
mately the same variability. If X is the sum -

X:VI+VZ+"'+VH

then the central limit theorem applies, and we conclude that X has a distribution
that is nearly normal. This is true for virtually any parent distribution of the V}’s, pro-
vided that n is large enough.

The univariate central limit theorem also tells us that the sampling distribution
of the sample mean, X for a large sample size is nearly normal, whatever the
form of the underlying population distribution. A similar result holds for many
other important univariate statistics.

Tt turns out that certain multivariate statistics, like X and $, have large-sample
properties analogous to their univariate counterparts. As the sample size is in-
creased without bound, certain regularities govern the sampling variation in X and
S, irrespective of the form of the parent population. Therefore, the conclusions pre-
sented in this section do not require muliivariate normal populations. The only
requirements are that the parent population, whatever its form, have a mean g and
a finite covariance .

Result 4.12 (Law of large numbers). let Y|, Y,, ..., Y, be independent observa-
tions from a population with mean E(Y;) = . Then
g Yith++Y,
n
converges in probability to p as n increases without bound. That is, for any
prescribed accuracy & > 0, P[—e < Y — p < &) approaches unity as n — 6.

Proof. See [9]. ]

As a direct consequence of the law of large numbers, which says that each X
converges in probability to u;,i = 1,2,..., p,

X converges in probability to g (4-26)
Also, each sample covariance s;, converges in probability too s, i, k = 1,2,..., p,and
S(or 3= S,) convergesin probability to % (4-27)

Statement (4-27) follows from writing

(n— Dsjp = 21 (Xji — X)) (Xji — Xi)
I=

n

2 (Xji — ma + i = X) (X = g + i — Xi)

j=1

n

= > (Xji = w) (X = ) + X — ) (Xie — i)

=1
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Letting ¥; = (X}, — pi{(Xji — ), with E(Y;) = ay;, we see that the first term in
5; converges to o, and the second term converges to zero, by applying the law of
large numbers.

The practical interpretation of statements (4-26) and (4-27) is that, with high
probability, X will be close to p and S will be close to 2 whenever the sample size is
large. The statement concerning X is made even more precise by a multivariate
version of the central limit theorem.

Result 4.13 (The central limit theorem). Let X, X,,..., X, be independent
observations from any population with mean u and finite covariance X. Then

Vi (X ~ ) has an approximate N,(0, ) distribution

for large sample sizes. Here n should also be large relative to p.
Proof. See [1]. . n

The approximation provided by the central limit theorem applies to dis-
crete, as well as continuous, multivariate populations. Mathematically, the limit
is exact, and the approach to normality is often fairly rapid. Moreover, from the
results in Section 4.4, we know that X is exactly normally distributed when the
underlying population is normal. Thus, we would expect the central limit theo-
rem approximation to be quite good for moderate n when the parent population
is nearly normal.

As we have seen, when n is large, S is close to X with high probability. Conse-
quently, replacing X by S in the approximating normal distribution for X will have a
negligible effect on subsequent probability calculations.

Result 4.7 can be used to show that n(X — u)'E?(X - u) hasa y? distribution

- - 1 —
when X is distributed as N‘,,(y,, " E) or, equivalently, when Va (X — p) has an
N,(0, %) distribution. The X%; distribution is approximately the sampling distribution
of n(X — m) X1(X — u) when X is approximately normally distributed. Replac-
ing =7 by $™! does not seriously affect this approximation for n large and much

greater than p.
We surnmarize the major conclusions of this section as follows:

Let X;, X, ..., X, be independent observations from a population with mean
£ and finite (nonsingular) covariance X. Then

Vr (X ~ u) is approximately N, (0, X)
and (4-28)
n(X — u)'S(X — p) is approximately x%
for n — plarge.
In the next three sections, we consider ways of verifying the assumption of nor-

mality and methods for transforming nonnormal observations into observations
that are approximately normal.
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4.6 Assessing the Assumption of Normality

As we have pointed out, most of the statistical techniques discussed in subsequent
chapters assume that each vector observation X; comes from a multivariate normal
distribution. On the other hand, in situations where the sample size is large and the
techniques depend solely on the behavior of X, or distances involving X of the form
n(X — u)'S™HX - ), the assumption of normality for the individual observa-
tions is less crucial. But to some degree, the guality of inferences made by these
methods depends on how closely the true parent population resembles the multi-
variate normal form. It is imperative, then, that procedures exist for detecting cases
where the data exhibit moderate to extreme departures from what is expected
under multivariate normality.

We want to answer this question: Do the observations X appear to violate the
assumption that they came from a normal population? Based on the properties of
normal distributions, we know that all linear combinations of normal variables are
normal and the contours of the multivariate normal density are ellipsoids. There-
fore, we address these questions:

1. Do the marginal distributions of the elements of X appear to be normal? What
about a few linear combinations of the components X;?

2. Do the scatter plots of pairs of observations on different characteristics give the
elliptical appearance expected from normal populations?

3. Are there any “wild” observations that should be checked for accuracy?

It will become clear that our investigations of normality will concentrate on the
behavior of the observations in one or two dimensions (for example, marginal dis-
tributions and scatter plots). As might be expected, it has proved difficult to con-
struct a “good” overall test of joint normality in more than two dimensions because
of the large number of things that can go wrong. To some extent, we must pay a price
for concentrating on univariate and bivariate examinations of normality: We can
never be sure that we have not missed some feature that is revealed only in higher
dimensions. (It is possible, for example, to construct a nonnormal bivariate distribu-
tion with normal marginals, [See Exercise 4.8.]) Yet many types of nonnormality are
often reflected in the marginal distributions and scatter plots. Moreover, for most
practical work, one-dimensional and two-dimensional investigations are ordinarily
sufficient. Fortunately, pathological data sets that are normal in lower dimensional
representations, but nonnormal in higher dimensions, are not frequently encoun-
tered in practice.

Evaluating the Normality of the Univariate Marginal Distributions

Dot diagrams for smaller n and histograms for n > 25 or so help reveal situations
where one tail of a univariate distribution is much longer than the other. If the his-
togram for a variable X; appears reasonably symmetric, we can check further by
counting the number of observations in certain intervals. A univariate normal distri-
bution assigns probability .683 to the interval (u; — Voy;, u; + Vo;;) and proba-
bility .954 to the interval (u; — 2Vo;, u; + 2Vo;;). Consequently, with a large
sample size n, we expect the observed praportion p;; of the observations lying in the
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interval (%, — V5, % + Vs;;) to be about .683. Similarly, the observed proportion

Pi of the observations in (¥; — 2V, ¥; + 2Vs;;) should be about .954. Using the
normal approximation to the sampling distribution of p; (see [9]), we observe that

either
- (683)(317) 1.396
piy— 683 >3\ [—mmmF ="+
| Bix | n vn
or

(954)(046) _ 628

' Vn
would indicate departures from an assumed normal distribution for the ith charac-
teristic. When the observed proportions are too small, parent distributions with
thicker tails than the normal are suggested.

Plots are always useful devices in any data analysis. Special plots called Q-
plots can be used to assess the assumption of normality. These plots can be made for
the marginal distributions of the sample observations on each variable. They are, in
effect, plots of the sample quantile versus the quantile one would expect to observe if
the observations actually were normally distributed. When the points lie very nearly
along a straight line, the normality assumption remains tenable. Normality is suspect
if the points deviate from a straight line. Moreover, the pattern of the deviations can
provide clues about the nature of the nonnormality. Once the reasons for the non-
normality are identified, corrective action is often possible. (See Section 4.8.)

To simplify notation, let x;, x,,. .., X, represent n observations on any single
characteristic X;. Let x;) =< X(2) = - = X(,) Tepresent these observations after
they are ordered according to magnitude. For example, x,) is the second smallest
observation and x, is the largest observation. The x;)’s are the sample quantiles.
When the x(;) are distinct, exactly j observations are less than or equal to x(;;- (This
is theoretically always true when the observations are of the continuous type, which
we usually assume.) The proportion j/n of the sample at or to the left of x;, is often

approximated by (j - %]/n for analytical convenience.'
For a standard normal distribution, the quantiles g; are defined by the relation

b - 954] >3 (4-29)

9ty ) j-1
P[Z = q(/)] = [w e e~ ? /zdz = p(/) = - 2 (4_30)

(See Table 1 in the appendix). Here py;) is the probability of getting a value less than
or equal to g, in a single drawing from a standard normal population.
The idea is to look at the pairs of quantiles (g, x;)) with the same associated

cumulative probability (j ~ %)/n. If the data arise from a normal populatibn, the
pairs (gy;), x(;) will be approximately linearly related, since o) + u is nearly the
expected sample quantile.

1The % in the numerator of (j - %)/n is a “continuity" correction. Some authors (see [5] and [10])

have suggested replacing (j - %)/n by (i - 3i)/ (" + 13)
2A better procedure is to plot (m;). X(;)), Where my;y = E(z(;) is the expected value of the jth-
order statistic in a sample of size 7 from a standard normal distribution. (See [13] for further discussion.)



Assessing the Assumption of Normality 179

Example 4.9 (Constructing a Q-Q plot) A sample of n = 10 observations gives the
values in the following table:

Ordered .
observations P"Obab‘l'iy levels Standard normal

X(,-) (j - 5)/’1 quantiles q(})

-1.00 .05 —1.645

-.10 15 —1.036

.16 25 —.674

41 35 —-.385

.62 45 —.125

80 55 125

1.26 .65 385

1.54 75 674

1.71 .85 1.036

2.30 .95 1.645

385
L_—2n4, - 65 [See (4-30).]
27

Here, for example, P[Z = .385] = /

-0

Let us now construct the Q-Q plot and comment on its appearance. The O-Q

plot for the foregoing data, which is a plot of the ordered data x; against the nor-

mal quantiles g;, is shown in Figure 4.5. The pairs of points (g, x(;) lie very near-

ly along a straight line, and we would not reject the notion that these data are
normally distributed—particularly with a sample size as small as n = 10.

0]
[ ]
2
° [ ]
1 [ ]
[ ]
] i bl 1 I - q(j)
L, -t o 1 2

Figure 4.5 A O-Q plot for the
data in Example 4.9. =

The calculations required for Q-Q plots are easily programmed for electronic
computers. Many statistical programs available commercially are capable of produc-
ing such plots.

The steps leading to a O—Q plot are as follows:

1. Order the original observations to get x(;), X(2),- - - , X(n) and their corresponding
probability values (1 - %)/n, (2 - %)/n,..., (n - %)/n;
2. Calculate the standard normal quantiles g1y, g2} - - - » 4(n); and

3. Plot the pairs of observations (g1, ¥(1)), (9(2)> X(2))s- - - » ((n)» ¥(m)), and €XaM-
ine the “straightness” of the outcome.
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Q-Q plots are not particularly informative unless the sample size is moderate to
large—for instance, 2 = 20. There can be quite a bit of variability in the straightness
of the O—-Q plot for small samples, even when the observations are known to come
from a normal population.

-

Example 4.10 (A Q-Q plot for radiation data) The quality-control department of a
manufacturer of microwave ovens is required by the federal government to monitor
the amount of radiation emitted when the doors of the ovens are closed. Observa-
tions of the radiation emitted through closed doors of n = 42 randomly selected

ovens were made. The data are listed in Table 4.1.

Table 4.1 Radiation Data (Door Closed)
Oven Oven Oven
no. Radiation no. Radiation no. Radiation
1 15 16 10 31 .10
2 09 17 02 32 20
3 .18 18 10 33 - A1
4 10 19 .01 34 30
5 05 20 40 35 .02
6 12 21 10 36 20
7 08 22 .05 37 20
8 05 23 .03 38 30
9 08 24 05 39 30
10 10 25 15 40 40
11 07 26 10 41 30
12 02 27 15 42 05
13 01 28 09
14 10 29 08
L 15 10 30 18
Eource: Data courtesy of 1. D. Cryer.

In order to determine the probability of exceeding a prespecitied tolerance
level, a probability distribution for the radiation emitted was needed. Can we regard
the observations here as being normally distributed?

A computer was used to assemble the pairs (g(;). X¢jy) and construct the Q-Q
plot, pictured in Figure 4.6 on page 181, It appears from the plot that the data as
a whole are not normally distributed. The points indicated by the circled locations in
the figure are outliers—values that are too large relative to the rest of the
observations.

For the radiation data, several observations are equal. When this occurs, those
observations with like values are associated with the same normal quantile. This
quantile is calculated using the average of the quantiles the tied observations would

have if they all differed slightly. -
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3 Figure 4.6 A 0-Q plot of
9 ®°¢ the radiation data (door

o3 ’ closed) from Example 4.10.
o 3 (The integers in the plot

indicate the number of
i 1 1 | 1> g

-20

points occupying the same
-0 0 1.0 20 3.0 location.)

The straightness of the Q-0 plot can be measured by calculating the correlation co-
efficient of the pointsin the plot. The correlation coefficient for the O-Q plot is defined by

Z (xy = X9 — 9)
o

o=~ n n
—\2 —\2
> xp % 2 (e - )

j=1 j=1

and a powerful test of normality can be based on it. (See [5], [10], and [12].) Formally,
we reject the hypothesis of normality at level of significance a if r, falls below the
appropriate value in Table 4.2.

(4-31)

Table 4.2 Critical Points for the Q-Q Plot
Correlation Coefficient Test for Normality
Sample size Significance levels @
n 01 05 10
5 .8299 8788  .9032
10 .8801 9198  .9351
15 9126 9389 9503
.20 9269 9508  .9604
25 9410 9591  .9665
30 9479 9652 9715
35 9538 9682  .9740
40 9599 9726 9771
45 9632 9743 9792
50 9671 9768  .9809
55 9695 9787 9822
60 9720 9801 .9836
75 9771 9838  .9866
100 9822 9873 .9895
150 9879 9913 9928
200 9905 9931 .9942
300 9935 9953 .9960
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Example 4.11 (A correlation coefficient test for normality) Let us calculate the cor-
relation coefficient rg from the Q-Q plot of Example 4.9 (see Figure 4.5) and test

for normality.
Using the information from Example 4.9, we have ¥ = .770 and

-

10 10 10
2‘; (x5 — ¥)q(;) = 8.584, 21 (xy) — %) = 8472, and 21 qlj = 8795
= = =

Since always, g = 0,
8.584
o=  —
C" 8472 VB9
A test of normality at the 10% level of significance is provided by referring ryp = .994

tothe entry in Table 4.2 corresponding to n = 10anda = .10. This entry is .9351. Since
rg > 9351, we do not reject the hypothesis of normality. n

=.9%4

Instead of ry, some software packages evaluate the original statistic proposed
by Shapiro and Wilk [12]. Its correlation form corresponds to replacing gy;) by a
function of the expected value of standard normal-order statistics and their covari-
ances. We prefer rg because it corresponds directly to the points in the normal-
scores plot. For large sample sizes, the two statistics are nearly the same (see [13]),s0
either can be used to judge lack of fit.

Linear combinations of more than one characteristic can be investigated. Many
statisticians suggest plotting

€x; where Sé& =&

in which Xl is the largest eigenvalue of 8. Here xj = [xj;, x,..., x;,] is the jth
observation on the p variables X, X5,..., X,,. The linear combination &,x; corre-
sponding to the smallest eigenvalue is also frequently singled out for inspection.
(See Chapter 8 and [6] for further details.)

Evaluating Bivariate Normality

We would like to check on the assumption of normality for all distributions of
2,3,..., pdimensions. However, as we have pointed out, for practical work it is usu-
ally sufficient to investigate the univariate and bivariate distributions. We consid-
ered univariate marginal distributions earlier. It is now of interest to examine the
bivariate case.

In Chapter 1, we described scatter plots for pairs of characteristics. If the obser-
vations were generated from a multivariate normal distribution, each bivariate dis-
tribution would be normal, and the contours of constant density would be ellipses.
The scatter plot should conform to this structure by exhibiting an overall pattern
that is nearly elliptical.

Moreover, by Result 4.7, the set of bivariate outcomes x such that

(x - n)' 7' (x — n) = 44(5)
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has probability .5. Thus, we should expect roughly the same percentage, 50%, of
sample observations to lie in the ellipse given by

{all x such that (x — x)'S(x — X) = ¥3(.5)}

where we have replaced u by its estimate X and 57! by its estimate $71. If not, the
normality assumption is suspect.

Example 4.12 (Checking bivariate normality) Aithough not a random sample, data
consisting of the pairs of observations (x, = sales, x, = profits) for the 10 largest
companies in the world are listed in Exercise 1.4. These data give

% = 155.60 S = 7476.45 303.62
14.70 303.62 26.19
so

§1 = 1 2619 —303.62
103,623.12 | ~303.62 7476.45

000253  -.002930
—~.002930 072148

From Table 3 in the appendix, x3(.5) = 1.39. Thus, any observation x’ = [xj, Xxa]
satisfying

x; — 15560 |1 000253 ~.002930 || x; — 155.60 <139
x; — 14.70 -.002930 072148 || x, — 1470 |~

is on or inside the estimated 50% contour. Otherwise the observation is outside this
contour. The first pair of observations in Exercise 1.4 is [xy, x;)’ = [108.28,17.05].
In this case

108.28 — 155.60 |’ 000253 —.002930 || 108.28 — 155.60
17.05 — 14.70 —.002930 072148 17.05 — 14.70

=1.61 > 1.39

and this point falls outside the 50% contour. The remaining nine points have gener-
alized distances from x of .30, .62, 1.79, 1.30, 4.38, 1.64, 3.53,1.71, and 1.16, respec-
tively. Since four of these distances are less than 1.39, a proportion, .40, of the data
falls within the 50% contour. If the observations were normally distributed, we
would expect about half, or 5, of them to be within this contour. This difference in
proportions might ordinarily provide evidence for rejecting the notion of bivariate
normality; however, our sample size of 10 s too small to reach this conclusion. (See
also Example 4.13.) -

Computing the fraction of the points within a contour and subjectively compar-
ing it with the theoretical probability is a useful, but rather rough, procedure.
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A somewhat more formal method for judging the joint normality of a data set is
based on the squared generalized distances

d,z = (x; — i)'s'l(xj - X), j=12,...,n 432)

where x;, Xy, - - - » Xp ar€ the sample observations. The procedure we are about to de-
scribe is not limited to the bivariate case; it can be used for all p = 2.

When the parent population is multivariate normal and both n and n — p are
greater than 25 or 30, each of the squared distances 42, d3, .., 42 should behave
like a chi-square random variable. [See Result 4.7 and Equations (4-26) and (4-27)]
Although these distances are not independent or exactly chi-square distributed, it is
helpful to plot them as if they were. The resulting plot is called a chi-square plot or
gamma plot, because the chi-square distribution is a special case of the more general
gamma distribution. (See [6].)

To construct the chi-square plot,

1. Order the squared_' distances in (4-32) from smallest to largest as

dhy = dpy = = d).

2. Graph the pails (‘Ic.p([f - %)/n) d(z,)), where Qc,p((f - %)/n) is the
100( j- %)/n quantile of the chi-square distribution with p degrees of freedom.

Quantiles are specified in terms of proportions, whereas percentiles are speci-

fied in terms of percentages.
. . 1
The quantiles qc,p((] - 5)/n) are related to the upper percentiles of a

chi-squared distribution. In particular, qc.p((j - %)/,,) = Xf;((n — i+ %)/n)

The plot should resemble a straight line through the origin having slope 1. A
systematic curved pattern suggests lack of normality. One or two points far above
the line indicate large distances, or outlying observations, that merit further

attention.

——— ——
Example 4.13 (Constructing'a chi-square plot) Let us construct a chi-square plot of
the generalized distances given in Example 4.12. The ordered distances and the
corresponding chi-square percentiles for p = 2 and n = 10 are listed in the follow-

ing table:

1 .30 10
2 .62 33
3 1.16 58
4 1.30 86
5 1.61 120
6 1.64 1.60
7 1.71 2.10
8 1.79 277
9 3.53 379
10 4.38 5.99
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Figure 4.7 A chi-square plot of the ordered distances in Example 4.13.

A graph of the pairs [qc,z((j - %)/10), d(zj)) is shown in Figure 4.7. The points in

Figure 4.7 are reasonably straight. Given the small sample size it is difficult to
reject bivariate normality on the evidence in this graph. If further analysis of the
data were required, it might be reasonable to transform them to observations
more nearly bivariate normal. Appropriate transformations are discussed in
Section 4.8. ||

In addition to inspecting univariate plots and scatter plots, we should check mul-
tivariate normality by constructing a chi-squared or 4> plot. Figure 4.8 contains a2

dg, 4
3
3
10 . 02
®
8 .o 8 J .
J oo
6 ... 6 ...
* .
g L
4 — '. 4
2 ,f 2 T f
0 ’ 0 —\,
F T T T T T T ch(U = %)/30) T T T T 71 rrqc_4((i- %)/30)
0 2 4 6 8 10 12 [¢] 2 4 6 g 10 12

Figure 4.8 Chi-square plots for two simulated four-variate normal data sets with n = 30.



186 Chapter 4 The Multivariate Normal Distribution

plots based on two oomputer~generated samples of 30 four-variate normal random
vectors. As expected, the plots have a straight-line pattern, but the top two or three
ordered squared distances are quite variable.

The next example contains a real data set comparable to the simulated data set

that produced the plots in Figure 4.8.

Example 4.14 (Evaluating multivariate normality for a four-variable data set) The
data in Table 4.3 were obtained by taking four different measures of stiffness,
Xy, X3, x3, and x4, of eachof 7 = 30 boards. The first measurement involves sending
a shock wave down the board, the second measurement is determined while vibrat-
the board, and the last two measurements are obtained from static tests. The

ing
(x; - %)'S7/(x; — X) are also presented in the table.

squared distances d: =

Table 4.3 Four Measurements of Stiffness T

Observation Observation j
no. X1 X X3 X, a? no. X, X, X3 X4 d?

1 1889 1651 1561 1778 .60 16 1954 2149 1180 1281 16.85

2 2403 2048 2087 2197 548 17 1325 1170 1002 1176  3.50

3 2119 1700 1815 2222 762 18 1419 1371 1252 1308 3.99

4 1645 1627 1110 1533 521 19 1828 1634 1602 1755 1.36

5 1976 1916 1614 1883 140 20 1725 1594 1313 1646 146

6 1712 1712 1439 1546 222 21 276 2189 1547 2111 9.90

7 1943 1685 1271 1671 499 22 1899 1614 1422 1477 5.06

8 2104 1820 1717 1874 1.49 23 1633 1513 1290 1516 .80

9 2983 2794 2412 25811226 24 2061 1867 1646 2037 2.54

10 1745 1600 1384 1508 .77 25 1856 1493 1356 1533 4.58

11 1710 1591 1518 1667 1.93 26 1727 1412 1238 1469 340

12 2046 1907 1627 1898 .46 27 2168 18% 1701 1834 238

13 1840 1841 1595 1741 270 28 1655 1675 1414 1597 3.00

14 1867 1685 1493 1678 .13 29 2326 2301 2065 2234 6.28

15 1859 1649 1389 1714 1.08 30 1490 1382 1214 1284 2.58

Source: Data courtesy of William Galligan.

The marginal distributions appeal quite normal ksee Exercise 4.33), with the

possible exception of specimen (board) 9. A
To further evaluate multivariate normality, we constructed the chi-square plot

shown in Figure 4.9. The two specimens with the largest squared distances are clear-
ly removed from the straight-line pattern. Together, with the next largest point or
two, they make the plot appear curved at the upper end. We will return to a discus-

sion of this plot in Example 4.15. ™

We have discussed some rather simple techniques for checking the multivariate
normality assumption. Specifically, we advocate calculating the d,z-, j=12,...,n
[see Equation (4-32)] and comparing the results with x* quantiles. For example,
p-variate normality is indicated if

1. Roughly half of the d are less than or equal to g, ,(.50).
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Figure 4.9 A chi-square plot for the data in Example 4.14.

2. A plot of the ordered squared distances dfj, = d}) =<:-- < d},) versus

LB (), (o . .
9e,p » de.p oo Gepl T J respectively, is nearly a straight

n n

line having slope 1 and that passes through the origin.

(See [6] for a more complete exposition of methods for assessing normality.)

We close this section by noting that all measures of goodness of fit suffer the same
serious drawback. When the sample size is small, only the most aberrant behavior will
be identified as lack of fit. On the other hand, very large samples invariably produce
statistically significant lack of fit. Yet the departure from the specified distribution
may be very small and technically unimportant to the inferential conclusions.

4.7 Detecting Outliers and Cleaning Data

Most data sets contain one or a few unusual observations that do not seem to be-
long to the pattern of variability produced by the other observations. With data
on a single characteristic, unusual observations are those that are either very
large or very small relative to the others. The situation can be more complicated
with multivariate data. Before we address the issue of identifying these outliers,
we must emphasize that not all outliers are wrong numbers. They may, justifiably,
be part of the group and may lead to a better understanding of the phenomena
being studied.
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Outliers are best detected visually whenever this is possible. When the number
of observations 7 is large, dot plots are not feasible. When the number of character-
istics p is large, the large number of scatter plots p(p ~ 1)/2 may prevent viewing
them all. Even so, we suggest first visually inspecting the data whenever possible.

What should we look for? For a single random variable, the problem is one di-
mensional, and*we look for observations that are far from the others. For instance,

the dot diagram
e e
o0 o0 [ ]
[ X ] o 000 © 0000000 o0 0 o [N N ) @
+4— - } x

reveals a single large observation which is circled.

In the bivariate case, the situation is more complicated. Figure 4.10 shows a
situation ‘with two unusual observations.

The data point circled in the upper right corner of the figure is detached
from the pattern, and its second coordinate is large relative to the rest of the x,

o 000 ® o0
®

e oo coete 082 oo o et e o® o@ .
i T T 3

Figure 4.10 Two outliers; one univariate and one bivariate.
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measurements, as shown by the vertical dot diagram. The second outlier, also cir-
cled, is far from the elliptical pattern of the rest of the points, but, separately, each of
its components has a typical value. This outlier cannot be detected by inspecting the
marginal dot diagrams.

In higher dimensions, there can be outliers that cannot-be detected from the
univariate plots or even the bivariate scatter plots. Here a large value of
(x; — X)'S7!(x; — X) will suggest an unusual observation, even though it cannot be
seen visually.

Steps for Detecting Outliers

1. Make a dot plot for each variable.
2. Make a scatter plot for each pair of variables.

3. Calculate the standardized values Zjx = (Xjx = X&)/ Vsex for j = 1,2,...,n
and each column & = 1,2,..., p. Examine these standardized values for large
or small values.

4. Calculate the -generalized squared distances (x; — X)’S”!(x; — X). Examine
these distances for unusually large values. In a chi-square plot, these would be
the points farthest from the origin.

In step 3, “large” must be interpreted relative to the sample size and number of
variables. There are n X p standardized values. When n = 100 and p = 5, there are
500 values. You expect 1 or 2 of these to exceed 3 or be less than —3, even if the data
came from a multivariate distribution that is exactly normal. As a guideline, 3.5
might be considered large for moderate sample sizes.

In step 4, “large” is measured by an appropriate percentile of the chi-square dis-
tribution with p degrees of freedom. If the sample size is n = 100, we would expect
5 observations to have values of d that exceed the upper fifth percentile of the chi-
square distribution. A more extreme percentile must serve to determine observa-
tions that do not fit the pattern of the remaining data.

The data we presented in Table 4.3 concerning lumber have already been
cleaned up somewhat. Similar data sets from the same study also contained data on
x5 = tensile strength. Nine observation vectors, out of the total of 112, are given as
rows in the following table, along with their standardized values.

Xy X X3 Xy X5 3} 22 23 2 Zs
1631 1528 1452 1559 1602 06 —.15 05 28 —.12
1770 1677 1707 1738 1785 64 43 107 94 .60
1376 1196 723 1285 2791 -101 -147 -287 -73 @&3D
1705 1577 1332 1703 1664 37 04 -43 81 13
1643 1535 1510 1494 1582 A1 ~12 28 04 -20
1567 1510 1301 1405 1553 -21 -22 -56 -28 -3l
1528 1591 1714 1685 1698 -.38 A0 110 .75 26
1803 1826 1748 2746 1764 78 101 123 52
1587 1554 1352 1554 1551 -13  -05 -35 26 -—32
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are quickly detected by locating a large leading digit for the standardized value.

The standardized values are based on the sample mean and variance, calculated
from all 112 observations. There are two extreme standardized values. Both are too large
with standardized values over 4.5. During their investigation, the researchers recorded
measurements by hand in a logbook and then performed calculations that produced the
values given in the table. When they checked their records regarding the values pin-
pointed by this analysis, errors were discovered. The value x5 = 2791 was corrected to
1241, and x4 = 2746 was corrected to 1670. Incorrect readings on an individual variable

The next example returns to the data on lumber discussed in Example 4.14,

Example 4.15 (Detecting outliers in the data on lumber) Table 4.4 contains the data
in Table 4.3, along with the standardized observations. These data consist of four
different measures of stiffness x;, x», X3, and x4, on each of n = 30 boards. Recall
that the first measurement involves sending a shock wave down the board, the second
measurement is determined while vibrating the board, and the last two measurements
are obtained from static tests. The standardized measurements are

Table 4.4 Four Measurements of Stiffness with Standardized Values

X, X5 X3 X4 Observation no. b4 2 23 2 42
1889 1651 1561 1778 1 -1 -3 2 2 60
2403 2048 2087 2197 2 15 9 19 15 548
2119 1700 1815 2222 3 g =2 10 15 762
1645 1627 1110 1533 4 -8 -4 -13 -6 52
1976 1916 1614 1883 5 2 5 3 5 140
1712 1712 1439 1546 6 -6 -1 -2 -6 22
1943 1685 1271 1671 7 1 -2 -8 -2 4%
2104 1820 1717 1874 8 6 2 7 5 149 |-
2983 2794 2412 2581 9 33 33 30 2.7
1745 1600 1384 1508 10 -5 -5 -4 -7 77
1710 1591 1518 1667 1 -6 -5 0 -2 1%
2046 1907 1627 1898 12 4 5 4 5 46
1840 1841 1595 1741 13 -2 3 3 0 270
1867 1685 1493 1678 14 -1 -2 -1 -1 13
1859 1649 1389 1714 15 -1 -3 -4 -0 108
1954 2149 1180 1281 16 1l 13 -11 -14
1325 1170 1002 1176 17 -18 -18 =17 -17 350
1419 1371 1252 1308 18 -5 -12 -8 -13 39
1828 1634 1602 1755 19 -2 -4 3 1 136
1725 1594 1313 1646 20 -6 -5 -6 -2 146
2276 2189 1547 21l 21 11 14 1 12 99
1899 1614 1422 1477 p/) -0 -4 -3 -8 506
1633 1513 1290 1516 23 -8 -1 -1 -6 80
2061 1867 1646 2037 24 5 4 5 1.0 254
1856 1493 1356 1533 25 -2 -8 -5 -6 458
1727 1412 1238 1469 26 -6 -11 -9 -8 340
2168 1896 1701 1834 27 8 5 6 3 238
1655 1675 1414 1597 28 -8 -2 -3 -4 300
2326 2301 2065 2234 29 13 17 1.8 16 628
1490 1382 1214 1284 30 -13 -12 -10 -14 258
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Figure 4.11 Scatter plots for the lumber stiffness data with specimens 9 and 16 plotted as solid dots.

Xie = Xk

z. = -
Jk /———skk s

k=123, 4

i=1,2,...

and the squares of the distances are 4 = (x; — X)'S7!(x; — X).

,30

The last column in Table 4.4 reveals that specimen 16 is a multivariate outlier,

since ¥3(.005) = 14.86; yet all of the individual measurements are well within their
respective univariate scatters. Specimen 9 also has a large 42 value.

The two specimens (9 and 16) with large squared distances stand out as clearly

different from the rest of the pattern in Figure 4.9. Once these two points are
removed, the remaining pattern conforms to the expected straight-line relation.
Scatter plots for the lumber stiffness measurements are given in Figure 4.11 above.



{92 Chapter4 The Multivariate Normal Distribution

The solid dots in these figures correspond to specimens 9 and 16. Although the dot for
specimen 16 stands out in all the plots, the dot for specimen 9 is “hidden” in the scat-
ter plot of x3 versus x, and nearly hidden in that of x, versus x3. However, specimen 9
is clearly identified as a multivariate outlier when all four variables are considered.
Scientists specializing in the properties of wood conjectured that specimen 9
was unusually cléar and therefore very stiff and strong. It would also appear that
specimen 16 is a bit unusual, since both of its dynamic measurements are above ay-
erage and the two static measurements are low. Unfortunately, it was not possible to
investigate this specimen further because the material was no longer available. m

If outliers are identified, they should be examined for content, as was done in
the case of the data on lumber stiffness in Example 4.15. Depending upon the
nature of the outliers and the objectives of the investigation, outliers may be delet-
ed or appropriately “weighted” in a subsequent analysis.

Even though many statistical techniques assume normal populations, those
based on the sample mean vectors usually will not be disturbed by a few moderate
outliers. Hawkins [7] gives an extensive treatment of the subject of outliers.

4.8 Transformations to Near Normality

If normality is not a viable assumption, what is the next step? One alternative is to
ignore the findings of a normality check and proceed as if the data were normally
distributed. This practice is not recommended, since, in many instances, it could lead
to incorrect conclusions. A second alternative is to make nonnormal data more
«normal looking” by considering transformations of the data. Normal-theory analy-
ses can then be carried out with the suitably transformed data.

Transformations are nothing more than a reexpression of the data in different
units. For example, when a histogram of positive observations exhibits a long right-
hand tail, transforming the observations by taking their logarithms or square roots
will often markedly improve the symmetry about the mean and the approximation
to a normal distribution. It frequently happens that the new units provide more
natural expressions of the characteristics being studied.

Appropriate transformations are suggested by (1) theoretical considerations or
(2) the data themselves (or both). It has been shown theoretically that data that are
counts can often be made more normal by taking their square roots. Similarly, the
logit transformation applied to proportions and Fisher’s z-transformation applied to
correlation coefficients yield quantities that are approximately normally distributed.

Helpful Transformations To Near Normality

Original Scale Transformed Scale
1. Counts,y Vy
A o a 1 p
2. Proportions, p logit(p) = EIOg(l f 13) (4-33)

—
!
~

1 1+
3. Correlations, r Fisher’s  z(r) = Elog( r)
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In many instances, the choice of a transformation to improve the approximation
to normality is not obvious. For such cases, it is convenient to let the data suggest a
transformation. A useful family of transformations for this purpose is the family of
power transformations.

Power transformations are defined only for positive variables. However, this is
not as restrictive as it seems, because a single constant can be added to each obser-
vation in the data set if some of the values are negative.

Let x represent an arbitrary observation. The power family of transformations
is indexed by a parameter A. A given value for A implies a particular transformation.
For example, consider x* with A = —1. Since x™' = 1/x, this choice of A corre-
sponds to the reciprocal transformation. We can trace the family of transformations
as A ranges from negative to positive powers of x. For A = 0, we define PL=IhxA
sequence of possible transformations is

1
.,x‘l=;,x°=lnx,x‘/“=\4/;,x1/2=\/)_c, P 2
shrinks large values of x increases large
values of x

To select a power transformation, an investigator looks at the marginal dot dia-
gram or histogram and decides whether large values have to be “pulled in” or
“pushed out” to improve the symmetry about the mean. Trial-and-error calculations
with a few of the foregoing transformations should produce an improvement. The

‘final choice should always be examined by a Q-Q plot or other checks to see
whether-the tentative normal assumption is satisfactory.

The transformations we have been discussing are data based in the sense that it
is only the appearance of the data themselves that influences the choice of an appro-
priate transformation. There are no external considerations involved, although the
transformation actually used is often determined by some mix of information sup-
plied by the data and extra-data factors, such as simplicity or ease of interpretation.

A convenient analytical method is available for choosing a power transforma-
tion. We begin by focusing our attention on the univariate case.

Box and Cox (3] consider the slightly modified family of power transformations

x* =1
W= A0 (4-34)
Inx A=0
which is continuous in A for x > 0. (See [8].) Given the observations xy, X5, ..., X,

the Box-Cox solution for the choice of an appropriate power A is the solution that
maximizes the expression

_ n 1 n N 2 n
€(A) = —Eln[zzi (xM = xM) } +(A-1) ,Z In x; (4-35)
We note that xjw is defined in (4-34) and

1& 1& x@—l
x”=;2x}”=;2<11\ ) (4-36)
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is the arithmetic average of the transformed observations. The first term in (4-35) is,
apart from a constant, the logarithm of a normal likelihood function, after maximiz-
ing it with respect to the population mean and variance parameters.

The caiculation of £(A) for many values of A is an easy task for a computer. It js
helpful to have a graph of €(A) versus A, as well as a tabular display of the pairs
(A, €(A)), in order to study the behavlor near the maximizing value A. For instance,
ifeither A = O (logarithm) or A = (square root) isnear A, one of these may be pre-
ferred because of its simplicity. '

Rather than program the calculation of (4-35), some statisticians recommend
the equivalent procedure of fixing A, creating the new variable

A
W -1

YIS T Ngea T Lhen (4-37)
i=1

and then calculating the sample variance. The minimum of the variance occurs at the
same A that maximizes (4-35).

Comment. It is now understood that the transformation obtained by maximiz-
ing €(A) usually improves the approximation to normality. However, there is no
guarantee that even the best choice of A will produce a transformed set of values
that adequately conform to a normal distribution. The outcomes produced by a
transformation selected according to (4-35) should always be carefully examined for
passible violations of the tentative assumption of normality. This warning applies
with equal force to transformations selected by any other technique.

Example 4.16 (Determining a power transformation for univariate data) We gave
readings of the microwave radiation emitted through the closed doors of n = 42
ovens in Example 4.10. The Q-Q plot of these data in Figure 4.6 indicates that the
observations deviate from what would be expected if they were normally distrib-
uted. Since all the observations are positive, let us perform a power transformation
of the data which, we hope, will produce results that are more nearly normal.
Restricting our attention to the family of transformations in (4-34), we must find
that value of A maximizing the function €(A) in (4-35).
The pairs (A, €(A)) are listed in the following table for several values of A:

A €(A) A £(A)
-1.00 70.52

~.90 75.65 40 106.20
~-.80 80.46 50 105.50
-.70 84.94 .60 104.43
—.60 89.06 .70 103.03
—-.50 92.79 .80 101.33
~.40 96.10 90 99.34
~30 98.97 1.00 97.10
~.20 101.39 1.10 94.64
~.10 103.35 1.20 91.96

00 104.83 1.30 89.10

.10 105.84 1.40 86.07

.20 106.39 1.50 82.88

30 106.51
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Figure 4.12 Plot of €¢(A) versus A for radiation data (door closed).

The curve of €(A) versus A that allows the more exact determination A = .28 is
shown in Figure 4.12 .

It is evident from both the table and the plot that a value of A around 30
maximizes €(A). For convenience, we choose A= 25 The data x; were
reexpressed as
AV -1

1

4
and a -0 plot was constructed from the transformed quantities. This plot is shown
in Figure 4.13 on page 196. The quantile pairs fall very close to a straight line, and we
would conclude from this evidence that the x( /4)

XV = ji=1,2,...,42

are approximately normal. L

Transforming Multivariate Observations

With multivariate observations, a power transformation must be selected for each of
the variables. Let A;, Ay, ..., A, be the power transformations for the p measured
characteristics. Each A, can be selected by maximizing

0(A) = ——1n[ 2 (e ~ ;30)2] + (A — 1) 2 Inx; (4-38)
=1
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Figure 4.13 A Q-Q plot of the transformed radiation data (door closed).
(The integers in the plot indicate the number of points occupying the same

location.)

where Xq4, Xak, -, Xng are the n observations on the kth variable, k = 1,2,..., p.

Here

Ap
1 12 (-1
= B = ( - ) (4-39)

is the arithmetic average of the transformed observations. The jth transformed mul-
tivariate observation is

(R = —
X° = X

LA

where Xl s ):2, ey X,, are the values that individually maximize (4-38).
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The procedure just described is equivalent to making each marginal distribution
approximately normal. Although normal marginals are not sufficient to ensure that
the joint distribution is normal, in practical applications this may be good enough.
If not, we could start with the values Al, Az,.. A obtained from the preceding
transformations and iterate toward the set of values /\’ [A1, Az, ..., Ap), which col-
lectively maxirmizes

(A, Mg,y Ay)

= ——lnlS(/\)| + (A -1) 2 Inx;; + (A — 1) 2 Inx;;
j=1 j=1

+o 4+ (2, - 1) 21 Inx;, (4-40)
s

where S(A) is the sample covariance matrix computed from

x?{ -1
A
xﬁ -1
x]m = Ay j=12,....n
X -1
L A

Maximizing (4-40) not only is substantially more difficult than maximizing the indi-
vidual expressions in (4-38), but also is unlikely to yield remarkably better results. The
selection method based on Equation (4-40) is equivalent to maximizing a multivariate
likelihood over p, % and A, whereas the method based on (4-38) corresponds to maxi-
mizing the kth univariate likelihood over u;, o, and A;. The latter llkellhood is
generated by pretending there is some A, for which the observations (x; }é = 1)/ A,
j =1,2,...,nhave a normal distribution. See [3] and [2] for detailed dlscussmns of the
univariate and multivariate cases, respectively. (Also, see [8].)

Example 4.17 (Determining power transformations for bivariate data) Radiation
measurements were also recorded through the open doors of the n = 42
microwave ovens introduced in Example 4.10. The amount of radiation emitted
through the open doors of these ovens is listed in Table 4.5.

In accordance with the procedure outlined in Example 4.16, a power transfor-
mation for these data was selected by maximizing €(A) in (4-35). The approximate
maximizing value was A = 30. Figure 4.14 on page 199 shows Q-Q plots of the un-
transformed and transformed door-open radiation data. (These data were actually
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Table 4.5 Radiation Data (Door Open)
Oven Oven Oven
no. Radiation no. Radiation no. Radiation
1 .30 16 .20 31 10
2 09 17 04 32 10
3 30 18 .10 33 10
4 .10 19 .01 34 30
5 .10 20 60 35 12
6 12 21 q2 - 36 25
7 09 22 .10 37 20
8 .10 23 05 38 40
9 .09 24 .05 39 33
10 10 25 15 40 32
11 07 26 30 41 12
12 05 27 15 42 12
13 01 28 09
14 45 29 09
15 12 30 28
Source: Data courtesy of J. D. Cryer.

transformed by taking the fourth root, as in Example 4.16.) It is clear from the figure
that the transformed data are more nearly normal, although the normal approxima-
tion is not as good as it was for the door-closed data. ‘

Let us denote the door-closed data by xy1, X,. .., X451 and the door-open data
by x12, X22.. .., X42,2. Choosing a power transformation for each set by maximizing
the expression in (4-35) is equivalent to maximizing £;(A) in (4-38) with & = 1,2.
Thus, using the outcomes from Example 4.16 and the foregoing results, we have
Ay = .30 and ), = .30. These powers were determined for the marginal distribu-
tions of x; and x,.

We can consider the joint distribution of x; and x, and simultaneously deter-
mine the pair of powers (A;, A,) that makes this joint distribution approximately
bivariate normal. To do this, we must maximize €(A;, A;) in (4-40) with respect to
both A; and A,.

We computed £(A,, A2) for a grid of Ay, A, values covering 0 = A; =< .50 and
0 = X, = 50, and we constructed the contour plot shown in Figure 4.15 on
page 200. We see that the maximum occurs at about (A;, A;) = (.16, .16).

The “best” power transformations for this bivariate case do not differ substan-
tially from those obtained by considering each marginal distribution. -

As we saw in Example 4.17, making each marginal distribution approximately
normal is roughly equivalent to addressing the bivariate distribution directly and
making it approximately normal. It is generally easier to select appropriate transfor-
mations for the marginal distributions than for the joint distributions.

& vron Nonlld He wis £
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Figure 4.15 Contour plot of €(A,, A,) for the radiation data.

If the data includes some large negative values and have a single long tail, a
more general transformation (see Yeo and Johnson [14]) should be applied.

{(x+ 1)) —1}A xz0,A%0
L = In(x + 1) x=z=0,A=0
“{(=x + 1) - 12 -A) x<0A%2
=In{—x + 1) x<0,A=2

Exercises

4.1. Consider a bivariate normal distribution with u; =1, uy = 3, oq; = 2, 05, = 1 and
pr2=—8
(a) Write out the bivariate normal density.
(b) Write out the squared statistical distance expression (x — p)'27!(x — u) as a qua-

dratic function of x; and x,.

4.2. Consider a bivariate normal population with u; = 0, uy, = 2, 04, = 2, 05, = 1, and
P12 = 5.
(a) Write out the bivariate normal density.
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4.4.

4.5.

4.6.
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(b) Write out the squared generalized distance expression (x — p#)'X 7 1(x — ) as a
function of x; and x,.

(c) Determine (and sketch) the. constant-density contour that contains 50% of the
probability.

Let X be Ny(p, X) with o' = [—3,1, 4] and

1 -2 0
T=|-2 50
0 0 2

Which of the following random variables are independent? Explain.
(a) X;and X;
(b) X2 and X3
(c) (Xy,X,) and X;3

X+ X
d _
@ =
(e) X;and X, — %X[ - X3
Let X be N3(p,X) with o' = [2,~3,1] and

and X3

111
T=|132
12 2

(a) Find the distribution of 3X; — 2.X, + X;.
(b) Relabel the variables if necessary, and find a2 X 1 vector a such that X, and

X .

X, — a'l: 1:] are independent.
X3

Specify each of the following.

(a) The conditional distribution of X, given that X, = x, for the joint distribution in
Exercise 4.2.

(b) The conditional distribution of X5, given that X,
tribution in Exercise 4.3.

(c) The conditional distribution of X3, given that X; = x, and X;
tribution in Exercise 4.4.

xjand X; = xjforthe joint dis-

1l

x, for the joint dis-

Let X be distributed as N3(p, %), where p* = [1, —1,2] and

4 0 -1
X = 0 5 O
-1 0 2

Which of the following random variables are independent? Explain.
(a) X and X,

(b) X and X,

(¢) X;and X;

(d) (X,, X3) and X,

(e) Xyand X; + 3X, — 2X;
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4.7.

4.8.

4.9.

4.19.

Refer to Exercise 4.6 and specify each of the following,
(a) The conditional distribution of X, given that X 3= X3.
(b) The conditionat distribution of X, given that X, =xyand X; = x;.

(Example of a nonnormal bivariate distribution with normal marginal
N(0,1),and et~ arginals) Let X, pe .
X, = X, f-1=sXx;=1
X, otherwise

Show each of the following,

(a) X; also has an N(0, 1) distribution.

(b) X, and X do not have a bivariate normal distribution.

Hint: -

(a) Since X; is N(0,1), P[-1 < X; = x] = P[~x = X, < 1] for an

y x. Wh

“1<n<lPXy=x]=PlX;=-1]+ P[-1<X,=x)] = P[X, = _?}
+P-1<=XSx) = PIXi = ~1] + Pl-x,= X, <1).Bul Px, = X, < ]
= P[=1 < X, = x;] from the symmetry argument in the first line of this hin "
Thus, P[X; = x] = P[X, = -1] + P[-1< X1 s 5] = PlX, = x] Whichi;
a standard normal probability. ’

(b) Consider the linear combination X; — X,, which equals zero with probability
Pl X,| > 1} = 3174,

Refer to Exercise 4.8, but modify the construction by replacing the break point 1 b

cso that v

X, = {AX, if-c= X, =c
X, elsewhere

Show that ¢ can be chosen so that Cov (X}, X3) = 0, but that the two random variables
are not independent.

Hint:

Forc = 0, evalvate Cov (X7, X,) = E[ X,(X))]

For ¢ very large, evaluate Cov (X, X5) = E[X,(- X))}

Show each of the following.
(a)
(MY
(b)
C
» B = 'A“Bl for 'Al #0

Hint:

A 0 (A o1 o , . I b
(a) ¢ B = ’0: I”ov Bl EXPaﬂdmg the determinant 0 B, by the first row

(see Definition 2A.24) gives 1 times a determinant of the same form, with the order
of Ireduced by one. This procedure is repeated until 1 X | B[ is obtained. Similarly,

o ?’2"‘"

by the last row gives

expanding the determinant ,:, ;}
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4.12.

4.13.
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A C A O|]|T A'C ) . A"C,
(b) !“, B! = ‘0, B| il)' ot But expanding the determinant 0 X
. A™IC .
by the last row gives o P | = 1. Now use the result in Part a.
Show that, if A is square,

[Al=]AnllA; ~ ApATIA, | for|Ap|#0
={An|lAn - A21AT{A12| for|Ay;| =0

Hint: Partition A and verify that

I —ApAG || AL Ap I 0] _ Ay — ApAYA; O
0’ 1 Ax A -A3A I 0’ A

Take determinants on both sides of this equality. Use Exercise 4.10 for the first and
third determinants on the left and for the determinant on the right. The second equality
for | A | follows by considering

|: 1 °j||:A11 An (|1 -AflAn|_|An 0 jl
-AnAT T [ Ay Apn W 1 0 Ay - AyAiiAp

Show that, for A symmetric,

Al = 1 o] (A - AnAGIA)T 0 I -ApAZ
'—AE%AZI I 0’ AE% 0’ I

Thus, (A} — A,zAiiAZJ)"l is the upper left-hand block of A~

-~ 1t
I -ApAy and
0’ 1

Hinr: Premultiply the expression in the hint to Exercise 4.11 by |:

-1
. I .
postmultiply by |: -1 ojl . Take inverses of the resulting expression.
—AnAy I

Show the following if X is N (u, X) with |2 | # 0.

(a) Check that |X| = |Z5;|| Ty — 21,373%,1|. (Note that | X | can be factored into
the product of contributions from the marginal and conditional distributions.)

(b) Check that
(x - u)ENx - p) =[x - g — 2223300z — 1))’
X (311 ~ 21220 %21) 7 [x) = 1 = 21233502 — m2)]
+ (x3 = 1) E33(x2 — m)

(Thus, the joint density exponent can be written as the sum of two terms corresponding

to contributions from the conditional and marginal distributions.)

(c) Given the results in Parts a and b, identify the marginal distribution of X; and the
conditional distribution of X | X, = x,.
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Hint:
(a) Apply Exercise 4.11.
(b) Note from Exercise 4.12 that we can write (x — p)'S 7 '(x — ) as

l:"z ~p | 1 0 [(211 - %2353%)7 0 :]
Xy — My :‘255221 1 0’ 25%

X 1 —EIZEEi X, — B’y
0’ I X — ‘12
If we group the product so that

I -EnEE%:I ["1 - Fl:l - ,:"1 ~ = ZE0(x - py)
0 I X2 ~ B3 X; — @y

the result follows.

4.14. If X is distributed as N,(u, X) with | %] # 0, show that the joint density can be written
as the product of marginal densities for

Xl and XZ lf 212 = 0
(g%1) ((p—2)X1) (@x(p—q))

Hint: Show by block multiplication that

EI{ 0 . . 211 0
' £y =
o 5% is the inverse of X 0o 2
Then write

. o0 ] [x-n
_ ' 1 _ = - ' - ’ 1
(X = w)27x - p) = [(xs ~ 1) (X2~ 1) ][ 0 3%~
= (x1 — M) EN(X ) + (X - ) E3h(x, — py)
Note that |2 | = | %, |} Z,,| from Exercise 4.10(a). Now factor the joint density.

n n
4.15. Show that > (x; — ¥)(x — #£)"and 2, (X ~ p)(x; — X)' are both p X p matrices of
j=1 j=1

zeros. Here x; = [x;),x3,...,%j,},J = L,2,...,n,and

~ 1 n
x=;21x,-

ij=

4.16. Let X, X;, X3, and X, be independent N,(#, ¥) random vectors.
(a) Find the marginal distributions for each of the random vectors
Vl = %X] - %Xz + %X:; - %X4
and i 1 1
v, =5X + X, - iXs - 1K
(b) Find the joint density of the random vectors V) and V, defined in (a).

4.17. Let X,, X, X;, X, and X5 be independent and identically distributed random vectors
with mean vector g and covariance matrix . Find the mean vector and covariance ma-
trices for each of the two linear combinations of random vectors

1 1 1 1 1
X +5Xe + 5X5 + 53Xy + 5 X
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4.19.

4.20.

4.21.

4.22,

4.23,

4.24.

Exercises 205

and
XI—X2+X3—X4+XS

in terms of u and X. Also, obtain the covariance between the two linear combinations of
random vectors.

Find the maximum likelihood estimates of the 2 X 1 mean vector p and the 2 X 2
covariance matrix X based on the random sample

6
X =

=RV R G %}

4
7
7
from a bivariate normal population.

Let X1, X5, .., Xpp be a random sample of size n = 20 from an Ng(p, %) population.
Specify each of the following completely.

(a) The distribution of (X; — p)'2(X, — u)
(b) The distributions of X and Vn(X — g)
(c) The distribution of (n — 1) S

For the random variables X, Xy, ..., X, in Exercise 4.19, specify the distribution of
B(19S)B’ in each case.

1 -4 -1 0 o o0
(a)B=[ S

00 0 -3 -3 1

100000
(b)B”[001000]

Let X,,..., X0 be a random sample of size 60 from a four-variate normal distribution
having mean p and covariance %. Specify each of the following completely.

(a) The distribution of X

(b) The distribution of (X; — p)' =X, - p)

(c) The distribution of (X — p)' 27X — u)

(d) The approximate distribution of n(X — p}'S™Y(X - )

Let X,,X,,..., X5 be a random sample from a population distribution with mean g
and covariance matrix %. What is the approximate distribution of each of the following?

L@X

) n(X - p)S(X - n)

Consider the annual rates of return (including dividends) on the Dow-Jones
industrial average for the years 1996-2005. These data, multiplied by 100, are

-06 3.1 25.3 -16.8 -7.1 -62 252 226  26.0.

Use these 10 observations to complete the following.

(a) Construct a 0-Q plot. Do the data seem to be normally distributed? Explain.

(b) Carry out a test of normality based on the correlation coefficient ry. [See (4-31).]
Let the significance level be 2 = .10.

Exercise 1.4 contains data on three variables for the world’s 10 largest companies as of
April 2005. For the sales (x,) and profits (x,) data:

(a) Construct 0-Q plots. Do these data appear to be normally distributed? Explain.
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4.25.

4.26.

4.27.

4.28.

4.29.

4.30,

(b) Carry out a test of normality based on the correlation coefficient rg. [See (431
Set the significance level ata = .10. Do the resuits of these tests corroborate the p |
sults in Part a? e

Refer to the data for the world’s 10 largest companies in Exercise 1.4. Construct a ch;
square plot using all three variables. The chi-square quantiles are "

0.3518 07978 12125 1.6416 2.1095 2.6430 3.2831 41083 53170 7.8147

Exercise 1.2 gives the age x1, measured in years, as well as the selling price x,, measureq
in thousands of dollars, for n = 10 used cars. These data are reproduced as follows:

x | 1 2 3 3 4 5 6 & 9
x ‘ 1895 1000 1795 1554 1400 1295 894 749 600 399

(a) Use the results of Exercise 1.2 to calculate the squared statistical distances
(x; — i)’S"(x,» - %),j=1,2,...,10, where x}; = [x;;, x5].

(b) Using the distances in Part a, determine the proportion of the observations falling
within the estimated 50% probability contour of a bivariate normal distribution.

(c) Order the distances in Part a and construct a chi-square plot.

(d) Given the results in Parts b and c, are these data approximately bivariate normal?
Explain. )

Consider the radiation data (with door closed) in Example 4.10. Construct 2 0-Q plot

for the natural logarithms of these data. [Note that the natural logarithm transformation

corresponds to the value A = 0 in (4-34).] Do the natural logarithms appear to be nor-

mally distributed? Compare your results with Figure 4.13. Does the choice A = ! or

A = 0 make much difference in this case? 4

The following exercises may require a compuier.

Consider the air-pollution data given in Table 1.5. Construct a Q-Q plot for the solar

radiation measurements and carry out a test for normality based on the correlation

coefficient ry [see (4-31)]. Let @ = .05 and use the entry corresponding to n = 40 in

Table 4.2.

Given the air-pollution data in Table 1.5, examine the pairs X5 = NO; and X = O for

bivariate normality.

(a) Calculate statistical distances (x; - X)S7(x; -~ X), j=1,2,...,42, where
x;= (x5, %j6):

(b) Determine the proportion of observations x; = [Xjs. %61, j = 1,2,...,42, falling
within the approximate 50% probability contour of a bivariate normal distribution.

(c) Construct a chi-square plot of the ordered distances in Part a,

Consider the used-car data in Exercise 4.26.

(a) Determine the power transformation A; that makes the x; values approximately
normal. Construct a Q-Q plot for the transformed data.

(b) Determine the power transformations A; that makes the x, values approximately
normal. Construct a @—Q plot for the transformed data.

(c) Determine the power transformations A’ = [A1, Xz] that make the [x,, x,] values
jointly normal using (4-40). Compare the results with those obtained in Parts a and b.
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4.32.

4.33.

4.34.

4.35.

4.36.

4.37.

4.38.

4.39.
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Examine the marginal normality of the observations on variables X, X,, ..., X; for the
multiple-scierosis data in Table 1.6. Treat the non-multiple-sclerosis and multiple-sclerosis
groups separately. Use whatever methodology, including transformations, you feel is
appropriate.

Examine the marginal normality of the observations on variables X, X, ..., X for the
radiotherapy data in Table 1.7. Use whatever methodology, including transformations,
you feel is appropriate.

Examine the marginal and bivariate normality of the observations on variables
X, X5, X3, and X, for the data inTable 4.3.

Examine the data on bone mineral content in Table 1.8 for marginal and bivariate nor-
mality.

Examine the data on paper-quality measurements in Table 1.2 for marginal and multi-
variate normality.

Examine the data on women’s national track records in Table 1.9 for marginal and mul-
tivariate normality.

Refer to Exercise 1.18. Convert the women’s track records in Table 1.9 to speeds mea-
sured in meters per second. Examine the data on speeds for marginal and multivariate
normality. )

Examine the data on bulls in Table 1.10 for marginal and multivariate normality. Consider
only the variables YrHgt, FtFrBody, PrctFFB, BkFat, SaleHt, and SaleWt.

The data in Table 4.6 (see the psychological profile data: www.prenhall.com/statistics) con-
sist of 130 observations generated by scores on a psychological test administered to Peru-
vian teenagers (ages 15, 16, and 17). For each of these teenagers the gender (male = 1,
female = 2) and socioeconomic status (low = 1, medium = 2) were also recorded. The
scores were accumulated into five subscale scores labeled independence (indep), support
(supp), benevolence (benev), conformity (conform), and leadership (leader).

Table 4.6 Psychological Profile Data |
Indep Supp Benev Conform Leader Gender Socio
27 13 14 20 11 2 1
12 13 24 25 6 2 1
14 20 15 16 7 2 1
18 20 17 12 6 2 1
9 2 2 21 6 2 1
10 11 26 17 10 1 2
14 12 14 11 29 1 2
19 11 23 18 13 2 2
27 19 22 7 9 2 2
10 17 22 22 8 2 2

Source: Data courtesy of C. Soto.

(a) Examine each of the variables independence, support, benevolence, conformity and
leadership for marginal normality.

(b) Using all five variables, check for multivariate normality.

(¢) Refer to part (a).For those variables that are nonnormal, determine the transformation
that makes them more nearly normal.
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4.40.

4.41.

Consider the data on national parks in Exercise 1.27.
(a) Comment on any possible outliers in a scatter plot of the original variables.

(b) Determine the power transformation A, the makes the x; values approximate
normal. Construct a Q—Q plot of the transformed observations. y

(c) Determine the power transformation A, the makes the x, values approximate|
normal. Construct a @—Q plot of the transformed observations. y

(d) Determine the power transformation for approximate bivariate normality using;
(4-40). :

Consider the data on snow removal in Exercise 3.20. - /
(a) Comment on any possible outliers in a scatter plot of the original variables. b

(b) Determine the power transformation A; the makes the x; values approximatel
normal. Construct a @—@Q plot of the transformed observations. y :

(c) Determine the power transformation A, the makes the x, values approximatel
normal. Construct a Q—Q plot of the transformed observations. y

(d) Determine the power transformation for approximate bivariate normality using
(4-40). -
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